
MEEG 2003 <u>Quiz #2.m04</u>

- **1.** (2 points) Describe the *principle of transmissibility*.
- 2. (8 points) A 750-N force A and an 800-N force B act on an eyebolt as shown. Let

 $\mathbf{A} + \mathbf{B} = \mathbf{C}$

Using the *parallelogram law*, determine the magnitude *C* and the directional angle θ_C of **C**.

- The *principle of transmissibility* states that the effect of a force on the condition of rest or motion of a rigid body will remain unchanged if the force is moved (*or* transmitted) to act at another point on its line of action.
- 2. The parallelogram law for $\mathbf{A} + \mathbf{B} = \mathbf{C}$ is shown. By geometry and law of cosines, we write $A = 750 \text{ N}, B = 800 \text{ N}, 80^\circ - 45^\circ = 35^\circ \text{ }$ $C^2 = 750^2 + 800^2 - 2(750)(800)\cos 35^\circ$ C = 468.527 C = 469 N 2 By law of sines, we write $\frac{C}{\sin 35^\circ} = \frac{A}{\sin \alpha}$ $\therefore \alpha = 66.658^\circ \text{ }$ $\theta_c = 360^\circ - (45^\circ + \alpha) = 248.34^\circ$ $\theta_c = 248^\circ$ 2