MEEG 2003 Quiz #5.m13

A frame carrying a crate of 225 lb is shown. Determine (a) the tension F_1 in the cable at B, (b) the tension F_2 in the cable at C, (c) the reaction force A at the hinge support A, (d) the reaction force F_D at the roller support D.

FBD of crate & left pulley:

$$+\uparrow \Sigma F_y = 0$$
: $3F_1 - 225 = 0$

$$\therefore F_1 = 75 \text{ lb} \quad \textcircled{1}$$

FBD of pulley below *C*:

$$+\uparrow \Sigma F_{y} = 0$$
: $F_{2} - 2F_{1} = 0$

:
$$F_2 = 150 \text{ lb}$$

FBD of member *ABCD*:

+U
$$\Sigma M_A = 0$$
:

$$9(\frac{3}{5}F_D) + 12(\frac{4}{5}F_D) - 9F_2 - 6F_1 = 0$$

$$F_D = 120 :: \mathbf{F}_D = -72\mathbf{i} + 96\mathbf{j} \text{ lb}$$

$$\stackrel{+}{\rightarrow} \Sigma F_x = 0$$
: $A_x - \frac{3}{5} F_D = 0$

+
$$\Sigma F_y = 0$$
: $A_y - F_1 - F_2 + \frac{4}{5}F_D = 0$
 $A_x = 72$ $A_y = 129$

$$\therefore \mathbf{A} = 72\mathbf{i} + 129\mathbf{j} \text{ lb } ②$$

