MEEG 2003 Quiz #7,m17,073

- **1.** Define *radius of gyration* of an area about an axis. ②
- **2.** A composite section is shown, where C_1 , C_2 , and C are the centroids of the rectangular section, the S7 × 20 section, and the composite section, respectively. The S7 × 20 section has an area $A_2 = 5.88$ in² and moments of inertia $(I_u)_2 = 42.4$ in⁴ and $(I_y)_2 = 3.17$ in⁴. For this composite section, determine (a) the distance e, (b) the centroidal moments of inertia \overline{I}_x and \overline{I}_y . 8

2.
$$A_1 = 1.6$$
 $A_2 = 5.88$ $\overline{y}_1 = 3.7 - e$ $\overline{y}_2 = -e$ $\overline{y} = 0$
POM₁: $A = A_1 + A_2 = 7.48$
POM₂: $\overline{y}A = \overline{y}_1A_1 + \overline{y}_2A_2$
 $0(7.48) = (3.7 - e)(1.6) - e(5.88)$ $e = 0.7914$
 $e = 0.791$ in. 3
PAT: $I = \overline{I} + Ad^2$
 $\overline{I}_x = \frac{1}{12}(4)(0.4)^3 + 1.6(3.7 - e)^2 + [42.4 + 5.88(e^2)] = 59.64$
 $\overline{I}_x = 59.6$ in⁴ 3

 $\overline{I}_y = \frac{1}{12}(0.4)(4)^3 + 3.17 = 5.303$

 $\bar{I}_{v} = 5.30 \text{ in}^{4}$ 2