Answers to MEEG 2003 Sample Test Id

1.

(a) $\mathbf{M}_{A} = 210\mathbf{i} + 180\mathbf{j} + 60\mathbf{k}$ N·m (b) $M_{AB} = 40$ N·m (c) Since $M_{AB} > 0$, the action of **F** tends to *loosen* the joint at *A*. (d) $d_{s1} = 4.72$ m (e) $d_{s2} = 1.061$ m

2.

(*a*) *L* =21.6 in. (*b*) *P* = 176 lb

3.

A. (e) B.(c) C. (f) D. (g)

4.

A. (*a*) In terms of pound-mass (lbm), 1 lb is defined to be the weight of 1 lbm, where the gravitational acceleration is 9.80665 m/s²; i.e., 1 lb = 1 lbm (9.80665 m/s²). (*b*) In terms of kilogram, 1 lbm = 0.45359237 kg.

B. Newton's third law states that every action is matched by a reaction, and action and reaction are collinear, opposite in direction, and equal in magnitude.

C. (You need to draw a sketch.) In the formula $\mathbf{M}_P = \mathbf{r} \times \mathbf{F}$ for computing the moment \mathbf{M}_P about point *P*, the vector \mathbf{r} is a displacement vector from the moment center *P* to any (convenient) point (e.g., point *A*) on the line of action of **F**.

D. (You need to draw a sketch.) In the formula $M_{BC} = \lambda_{BC} \cdot (\mathbf{r} \times \mathbf{F})$ for computing the moment M_{BC} about axis *BC* of a force \mathbf{F} acting at point *A*, the vector λ_{BC} is a unit vector pointing from point *B* toward point *C* on the axis *BC*, while the vector \mathbf{r} is a displacement vector from any (convenient) point (e.g., point *B*) on the axis *BC* to any (convenient) point (e.g., point *A*) on the line of action of \mathbf{F} .