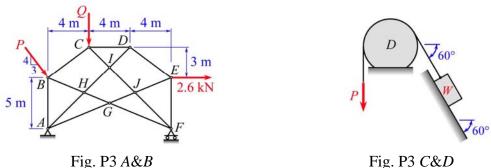

MEEG 2003

Test III ()


1. (30%) The centroid of the shaded area shown is at $C(\overline{x}, \overline{y})$. Determine (*a*) the moments of inertia I_x , (*b*) the radius of gyration k_x , (*c*) the ordinate \overline{y} of *C*, (*d*) the centroidal moment of inertia $\overline{I}_{x'}$, (*e*) the moments of inertia I_y .

ID#:

(Underline your last name.)

2. (30%) A frame is loaded as shown. Determine the forces exerted by the pins on the pinholes of member *ABC*.

- **3.** (5% each) *Circle on this test sheet* the correct or nearest item for each of the following:
 - A. A truss is shown, where P = 19.60 kN and Q = 2.1 kN. The magnitude of F_{AB} in member AB is (a) 20.0 kN. (b) 21.4 kN. (c) 22.7 kN. (d) 24.0 kN. (e) 25.3 kN. (f) 26.7 kN. (g) 28.0 kN.
 - **B.** A truss is shown, where P = 19.60 kN and Q = 2.1 kN. The magnitude of F_{HG} in member HG is (a) 6.11 kN. (b) 5.72 kN. (c) 5.33 kN. (d) 4.94 kN. (e) 4.55 kN. (f) 4.16 kN. (g) 3.77 kN.
 - *C*. If $\mu_s = 0.6$ between *all* surfaces of contact and the block has a weight of W = 27 lb, the minimum force **P** to pull the block up the incline is
 - (a) 145.8 lb. (b) 151.4 lb. (c) 157.1 lb. (d) 162.7 lb. (e) 168.3 lb. (f) 173.9 lb. (g) 179.5 lb.
 - **D.** If $\mu_s = 0.6$ between *all* surfaces of contact and the block has a weight of W = 27 lb, the minimum force **P** to keep the block from sliding down the incline is

(a) 3.88 lb. (b) 3.77 lb. (c) 3.65 lb. (d) 3.53 lb. (e) 3.41 lb. (f) 3.29 lb. (g) 3.18 lb.

4.(20%) Non-numerical problem.