2.11

Law of cocines:

$$
\begin{gathered}
9^{2}=8^{2}+10^{2}-2(8)(10) \text { ce } \beta \\
\therefore \beta= \\
\beta+\theta_{1}=90^{\circ} \quad \therefore \theta_{1}=\square \\
10^{2}=8^{2}+9^{2}-2(8)(9) \cos \gamma \\
\therefore \gamma=\square \\
\gamma+\theta_{2}=90^{\circ} \quad \therefore \theta_{2}=\square
\end{gathered}
$$

$T_{1}=4$ Ripe $\quad T_{2}=$?

$$
\vec{R}=\overrightarrow{T_{1}}+\overrightarrow{T_{2}}=R \downarrow
$$

applying the triangle pule, we have

side view for $\vec{T}_{P A}$:

Top view for $\vec{T}_{\text {PA }}$:

$$
\vec{T}_{P A}=\left(400 \cos 40^{\circ}\right)(-\vec{j})+\left(400 \sin 40^{\circ} \sin 30^{\circ}\right) \vec{i}
$$

$$
+\left(400 \sin 40^{\circ} \cos 30^{\circ}\right) \vec{k}
$$

$$
\vec{T}_{P A}=\square \vec{i}-\square \vec{j}+\square \vec{k}
$$

andytitial expression for TPA

Similarly, find $\vec{T}_{P B}=\square \vec{x}+\square \vec{j}+\square \vec{k}$

Similarly, get $\vec{F}_{D B}=\frac{F_{B B}}{\square}\langle\square, \square, \square\rangle, \vec{F}_{D C}=\frac{F_{D}}{\square}\langle\square, \square, \square\rangle$
$\vec{i}: \frac{1}{3} F_{D A}+\frac{\theta}{\square} F_{B B}+\frac{\square}{0} F_{\bar{D}}=0$
j: $\left.-\frac{2}{3} F_{A A}+\frac{0_{0}}{F_{\bar{\circ}}}+\frac{D_{0}}{F_{\bar{D}}}=-168\right\}$
$\vec{k}: \frac{2}{3} F_{D A}+$ 믐 $F_{D B}+\frac{\square}{\square} F_{D C}=0$

$$
F_{D A}=\square l b \quad F_{D B}=\square l b \quad F_{D C}=\square l b
$$

Solve the 3 se. for the 3 mikenowns.

$$
\begin{aligned}
& +\left(\frac{2}{3} F_{A A}+\frac{\square}{\square} F_{D B}+\frac{\square}{\square} F_{D C}\right) \overrightarrow{F_{E}}=-1683
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\therefore \vec{R}=\vec{T}_{P A}+\vec{T}_{P B}=}{2.60 \quad \vec{R}=\overrightarrow{F_{D A}}+\vec{F}_{D B}+\vec{F}_{D C}=\vec{R}, \vec{R}=-168 \vec{j} \mathrm{H}} \\
& \begin{array}{l}
F_{D A}=? \quad F_{D B}=? \quad F_{D C}=? \\
\vec{F}=F \vec{\lambda}_{F} \quad V_{1}, \cdots I . \\
A(12,0,24), B(6,0,-8), C(-12,0,8)
\end{array} \\
& D(0,24,0) \\
& \overrightarrow{D A}=12 \vec{i}-24 \vec{j}+24 \vec{k}=\langle 12,-24,24\rangle \\
& \overrightarrow{D A}=12\langle 1,-2,2\rangle, \quad \vec{\lambda}_{D A}=\frac{\overrightarrow{D A}}{\overrightarrow{D A}}, \quad \overline{D A}=12 \sqrt{1^{2}+2^{2}+2^{2}}=12(3) \\
& \vec{\lambda}_{D A}=\frac{1}{3}\langle 1,-2,2\rangle, \quad \vec{F}_{D A}=F_{D A} \vec{\lambda}_{D A}, \quad \vec{F}_{D A}=\frac{F_{B A}}{3}\langle 1,-2,2\rangle
\end{aligned}
$$

