Moment of a force
Force: an action to carse a body to translate
Moment: " " " " " notate
Moment center, moment arm, Narignon's theorem,
Right hand rule for moments

$$
\begin{aligned}
& \vec{M}_{p}=\vec{r} \times \vec{F} \quad M_{p}=r \cdot F \cdot \sin \theta \\
& M_{p}=(r \sin \theta) F=d_{L} F \quad M_{p}=d_{R} F
\end{aligned}
$$

Moment of a couple is the same abut any point.

$$
\begin{aligned}
& \text { Moment of a couple is the same about any pout. } \\
& \vec{M}_{A}=\vec{r} \times \vec{F}+\overrightarrow{0}=\vec{r} \times \vec{F} \quad \vec{M}_{B}=\overrightarrow{0}+\overrightarrow{B A} \times(-\vec{F}) \quad \overrightarrow{C B}-\overrightarrow{C A}+\overrightarrow{C A}=\overrightarrow{A_{B}} \\
& \vec{M}_{B}=-\overrightarrow{B A} \times \vec{F}=\overrightarrow{A B} \times \vec{F}=\vec{r} \times \vec{F}=\vec{M}_{A}, \quad \vec{M}_{A}=\vec{M}_{B}=\vec{M}_{L}=\overrightarrow{M_{S}}=\cdots
\end{aligned}
$$

Murment of a couple is a free vector.

$$
\begin{aligned}
\vec{M}_{C} & =\overrightarrow{C B} \times \vec{F}+\overrightarrow{C A} \times(-\vec{F})=\overrightarrow{C B} \times \vec{F}-\overrightarrow{C A} \times \vec{F}=(\overrightarrow{C B}-\overrightarrow{C A}) \times \vec{F} \\
& =\overrightarrow{A B} \times \vec{F}=\overrightarrow{M_{A}}=M_{P}=\cdots
\end{aligned}
$$

