

$$
\overrightarrow{E F}=\langle-2,3,6\rangle, \vec{\lambda}_{E F}=\frac{1}{7}\langle-2,3,6\rangle, \quad \vec{T}_{E F}=\frac{T_{E F}}{7}\langle-2,3,6\rangle
$$

$$
\sum M_{\neq}=0: 6\left(\frac{3}{7} T_{E F}\right)-3(72)=0, \quad T_{E F}=84 \quad T_{E F}=84 \mathrm{kN}
$$

$$
\sum M_{z}=0: \frac{12}{13} M_{A}+2\left(\frac{3}{7}\right)(84)-2(72)=0, \quad M_{A}=78 \mathrm{klmm}
$$

$$
\vec{M}_{A}=\frac{78}{13}(5 \vec{j}+12 \vec{k}) \quad \vec{M}_{A}=\square \text { R.N.m }
$$

$$
\Sigma M_{y}=0: \frac{5}{13}(78)-6 D_{x}-4(3)=0, \quad D_{x}=\square
$$

$$
\Sigma F_{x}=0: \quad A_{x}+D_{x}-\frac{2}{7} T_{E F}=0, \quad A_{x}=\square
$$

$$
\sum F_{y}=0: \quad A y+\frac{3}{7} T_{E F}-72=0
$$

$$
A y=\square
$$

$$
\Sigma F_{z}=0: \quad A_{z}+\frac{6}{7} T_{E F}+3=0, \quad A_{z}=\square
$$

$$
\vec{A}=A_{x} \vec{i}+A_{y} \vec{j}+A_{z} \vec{k} k N
$$

Iunknoww :

$$
\begin{aligned}
& A_{x}, A_{y}, A_{z}, B_{x}, B_{y}, \\
& B_{y}, T_{E q} \\
& \begin{array}{l}
\text { statically } \\
\text { indeterminate } \\
\text { to the first degree }
\end{array}
\end{aligned}
$$

