MEEG 2013	V	ΙE	E	G			2	0	1	3
------------------	---	----	---	---	--	--	---	---	---	---

Name: (Underline your <u>last name</u>.)

Final Exam ()

ID#: _____

Circle the correct or nearest item in each of the following: (10% each)

1. At the instant shown, the accelerations of the blocks *A* and *B* in the system are $\mathbf{a}_A = 2 \text{ m/s}^2 \downarrow$ and $\mathbf{a}_B = 3 \text{ m/s}^2 \uparrow$, respectively. The acceleration of the block *C* is

(a) 2 m/s² \uparrow . (b) 2 m/s² \downarrow . (c) 6 m/s² \uparrow . (d) 8 m/s² \uparrow . (e) 8 m/s² \downarrow .

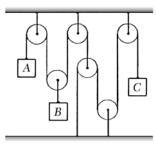


Fig. P1

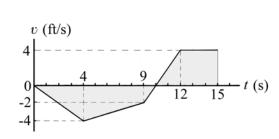


Fig. P2 & P3

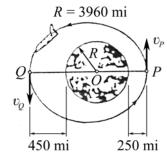


Fig. P4 & P5

- 2. The velocity of a particle in rectilinear motion is shown. The total distance traveled by the particle during $0 \le t \le 13$ s is
 - (a) 12 ft. (b) 16 ft. (c) 32 ft. (d) 36 ft. (e) 40 ft.
- **3.** The velocity of a particle in rectilinear motion is shown. It is known that the initial position of the particle is $x_0 = 15$ ft. The time t_1 at which the particle passes through the origin is
 - (a) 5.94 s. (b) 5.78 s. (c) 5.63 s. (d) 5.49 s. (e) 5.34 s.
- 4. A spacecraft revolves around the earth as shown. The period of orbit of the spacecraft is
 - (a) 1.583 h. (b) 1.597 h. (c) 1.611 h. (d) 1.625 h. (e) 1.639 h.
- **5.** A spacecraft revolves around the earth as shown. The minimum speed of the spacecraft in its orbit is (a) 4.45 mi/s. (b) 4.49 mi/s. (c) 4.52 mi/s. (d) 4.56 mi/s. (e) 4.60 mi/s.

Final Exam ()

ID#: _____

Circle the correct or nearest item in each of the following: (10% each)

- **6.** The 10-kg unbalanced wheel has a central radius of gyration $\bar{k} = 240$ mm about G and rolls without slipping with $\omega_1 = 7.5$ rad/s \mho in the position shown, where r = 480 mm and b = 140 mm. When G is directly to the left of C, the angular velocity ω_2 of the wheel is
 - (a) 4.77 rad/s \circlearrowleft . (b) 5.21 rad/s \circlearrowleft . (c) 5.63 rad/s \circlearrowleft . (d) 6.06 rad/s \circlearrowleft . (e) 6.47 rad/s \circlearrowleft .

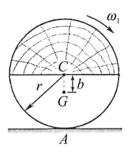


Fig. P6 & P7

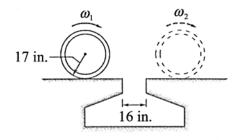


Fig. P8 & P9

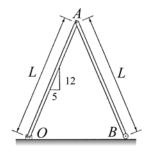


Fig. 10

- 7. Refer to Prob. 6. When G is directly to the left of C, the angular acceleration α of the unbalanced wheel is
 - (a) 12.48 $\text{rad/s}^2 \circlearrowleft$. (b) 11.40 $\text{rad/s}^2 \circlearrowleft$. (c) 10.39 $\text{rad/s}^2 \circlearrowleft$. (d) 9.43 $\text{rad/s}^2 \circlearrowleft$. (e) 8.54 $\text{rad/s}^2 \circlearrowleft$.
- 8. A section of pipe weighing 96.6 lb rolls without slipping with angular velocity ω_1 just before falling into the 16-in. gap. Assume that the impact is perfectly plastic and the angular speed of the pipe after having crossed the gap is $\omega_2 = 2.2$ rad/s. The angular speed ω' of the pipe just after impact is
 - (a) 2.99 rad/s. (b) 2.90 rad/s. (c) 2.82 rad/s. (d) 2.74 rad/s. (e) 2.66 rad/s.
- **9.** Refer to Prob. 8. the angular speed ω of the pipe just before impact is
 - (a) 3.52 rad/s. (b) 3.62 rad/s. (c) 3.73 rad/s. (d) 3.84 rad/s. (e) 3.95 rad/s.
- **10.** If $\alpha_{OA} = 1.2 \text{ rad/s}^2$ U just after the release from rest in the position shown, the length *L* of each slender rod of weight *W* is
 - (a) 3.48 ft. (b) 3.73 ft. (c) 4.02 ft. (d) 4.35 ft. (e) 4.75 ft.