MEEG 2013 <u>Quiz #1.m04.082</u>

- **1.** In curvilinear motion of particles, describe the magnitude and direction of (*a*) the normal component of acceleration \mathbf{a}_n , (*b*) the tangential component of acceleration \mathbf{a}_t . ②
- 2. Including sketches, derive the formulas for $\dot{\mathbf{e}}_r$ and $\dot{\mathbf{e}}_{\theta}$, which are the *time rates of change* of the unit vectors \mathbf{e}_r and \mathbf{e}_{θ} in the polar coordinate system, respectively.
- **3.** Making use of the formulas for $\dot{\mathbf{e}}_r$ and $\dot{\mathbf{e}}_{\theta}$ in Problem 2, derive in polar coordinates (*a*) the velocity \mathbf{v} , (*b*) the acceleration \mathbf{a} .

1. (*a*) The magnitude of \mathbf{a}_n equals the square of the speed v divided by the radius of curvature ρ of the path; i.e., $a_n = v^2/\rho$. The direction of \mathbf{a}_n points from the particle toward the center of curvature of the path. (1) (*b*) The magnitude of \mathbf{a}_t equals the time derivative of the speed v; i.e., $a_t = dv/dt$. The direction of \mathbf{a}_t is tangent to the path of the particle. (1)

2. Sketches showing the unit vectors \mathbf{e}_r , \mathbf{e}_{θ} , \mathbf{e}'_r , \mathbf{e}'_{θ} , as well as $\Delta \mathbf{e}_r = \Delta \theta \, \mathbf{e}_{\theta}$ and $\Delta \mathbf{e}_{\theta} = -\Delta \theta \, \mathbf{e}_r$. Use of calculus to show that $\dot{\mathbf{e}}_r = \dot{\theta} \, \mathbf{e}_{\theta}$ Use of calculus to show that $\dot{\mathbf{e}}_r = -\dot{\theta} \, \mathbf{e}_{\theta}$ Use of calculus to show that $\dot{\mathbf{e}}_{\theta} = -\dot{\theta} \, \mathbf{e}_r$

3. Position vector of the particle: $\mathbf{r} = r\mathbf{e}_r$ ① Use of the formulas $\dot{\mathbf{e}}_r = \dot{\theta}\mathbf{e}_{\theta}$, $\dot{\mathbf{e}}_{\theta} = -\dot{\theta}\mathbf{e}_r$ and the chain rule of differentiation to show that

$$\mathbf{v} = d\mathbf{r}/dt \qquad \mathbf{v} = \dot{r}\mathbf{e}_r + r\,\theta\,\mathbf{e}_\theta \, \textcircled{1}$$
$$\mathbf{a} = d\mathbf{v}/dt \qquad \mathbf{a} = (\ddot{r} - r\,\dot{\theta}^2)\mathbf{e}_r + (r\,\ddot{\theta} + 2\,\dot{r}\,\dot{\theta})\mathbf{e}_\theta \, \textcircled{2}$$