
MEEG 2013 Quiz #4.m22

A 2-kg sphere B is released to fall freely from position B_1 to strike with a velocity $\mathbf{v}_B = 12$ m/s \downarrow at a 5-kg sphere A that is at rest as shown. If the coefficient of restitution between A and B is e = 0.65, determine (a) the height h, (b) the velocity \mathbf{v}'_A of A just after impact.

$$T_1 + V_1 = T_2 + V_2$$
: $0 + 2(9.81)h = \frac{1}{2}(2)(12)^2 + 0$
 $h = 7.339$ $\therefore h = 7.34 \text{ m}$

$$B = \frac{2v'_{Bn}}{t^{3}} + B = \frac{2v'_{Bn}}{t^{3}} = \frac{2v'_{Bn}}{t^{3}}$$

$$+ \checkmark \Sigma V_t$$
: $2(12)(\frac{4}{5}) + 0 = 2v'_{Bt}$ $\therefore v'_{Bt} = 9.6 \text{ m/s}$

$$^{+} \Sigma V_x$$
: $0 + 0 = 2v'_{Bn}(\frac{4}{5}) - 2(9.6)(\frac{3}{5}) + 5v'_A$

Impact:
$$v'_{Bn} - v'_{A}(\frac{4}{5}) = 0.65 \left[0 - 12(\frac{3}{5}) \right]$$

$$v_A' = 3.027$$
 $v_{Bn}' = -2.259$ \therefore $\mathbf{v}_A' = 3.03 \text{ m/s} \rightarrow$