

## **MEEG 2013**

## Name:

ID#:

(Underline your **last name**.)

- Test I ( )
- **1.** (30%) The velocity of a particle in rectilinear motion is shown. If the particle is at x = -20 m when t = 0, (*a*) draw the *a*-*t* (acceleration versus time) and *x*-*t* (position versus time) curves for the interval  $0 \le t \le 13$  s, (*b*) determine the times  $t_1$  and  $t_2$  at which the particle passes through the origin, (*c*) determine the total distance traveled  $x_T$  by the particle during the interval  $0 \le t \le 11$  s.







- **2.** (30%) The barrel of a rifle is aimed at *B* but the bullet with a muzzle velocity of 2000 ft/s strikes at *C* as shown. Determine (*a*) the flight time  $t_{AC}$  of the bullet from *A* to *C*, (*b*) the distance  $\delta$  between *B* and *C*, (*c*) the speed  $v_C$  of the bullet as it strikes at *C*.
- 3. (20%) *Circle on this test sheet* the correct or nearest item for each of the following:
  - A. At the instant shown,  $\mathbf{v}_A = 2 \text{ m/s} \uparrow$ ,  $\mathbf{v}_B = 5 \text{ m/s} \downarrow$ . Thus, at this instant,  $\mathbf{v}_C$  is (a)  $2 \text{ m/s} \downarrow$ . (b)  $2 \text{ m/s} \uparrow$ . (c)  $3 \text{ m/s} \uparrow$ . (d)  $6 \text{ m/s} \downarrow$ . (e)  $6 \text{ m/s} \uparrow$ .
  - B. At the instant shown,  $\mathbf{v}_B = 5 \text{ m/s} \downarrow$ ,  $\mathbf{v}_C = 2 \text{ m/s} \downarrow$  Thus, at this instant,  $\mathbf{v}_D$  is (a) 4 m/s  $\downarrow$ . (b) 4 m/s  $\uparrow$ . (c) 6 m/s  $\downarrow$ . (d) 6 m/s  $\uparrow$ . (e) 8 m/s  $\downarrow$ .
  - C. A spacecraft S is in free flight around the earth at an altitude of  $a_0 = 300$  mi. Its period of orbit is (a) 92.5 min. (b) 92.8 min. (c) 93.2 min. (d) 93.5 min. (e) 93.8 min. (f) 94.2 min. (g) 94.5 min.
  - D. The radial component of acceleration of a particle is (a)  $v^2/\rho$ . (b)  $r\ddot{\theta} + 2\dot{r}\dot{\theta}$ . (c)  $\ddot{r} + r\dot{\theta}^2$ . (d)  $\ddot{\theta}$ . (e) dv/dt. (f)  $\ddot{r} - r\dot{\theta}^2$ . (g)  $\ddot{r}$ .
- **4.** (20%) Non-numerical problem.
  - A. Including a sketch, define transverse component of acceleration of a particle.
  - B. Including a sketch, define normal component of acceleration of a particle.
  - C. Including a sketch, define radial component of acceleration of a particle.
  - D. Including a sketch, define tangential component of acceleration of a particle.
  - *E.* Define *effective force* versus *inertia force*.