

MEEG 2013

Name:

ID#:

(Underline your last name.)

Fig. P1

Test II (

1. (30%) A 4-lb steel sphere *B* is released from the position B_1 and falls freely through a vertical distance h = 1.5528 ft before it hits a 3-lb aluminum sphere *A* with a downward velocity \mathbf{v}_B as shown. The sphere *A* is initially at rest and the suspending wire is inextensible. If the coefficient of restitution between the spheres *A* and *B* is e = 0.7, determine (*a*) the velocity \mathbf{v}_B just before impact, (*b*) the velocities \mathbf{v}'_A and \mathbf{v}'_B of the spheres *A* and *B* is given by the spheres *A* and *B* is e = 0.7, determine (*a*) the velocity \mathbf{v}_B just before impact.

- **2.** (30%) A linkage is shown, where the slider *D* moves along a smooth circular groove of radius 6 ft as indicated. It is known that the crank *AB* rotates with a constant angular velocity $\omega_{AB} = 2$ rad/s \heartsuit . Using the *parametric method*, determine the angular velocity ω_{BD} of the link *BD* and the velocity \mathbf{v}_D of the slider *D* when *AB* and *BD* become collinear with the line *AO*.
- **3.** A system of blocks and pulleys is shown, where the coefficient of kinetic friction is $\mu_k = 0.2$ between the support and the blocks *A* and *B*, which have masses of 75 kg and 50 kg, respectively. The applied force **P** is parallel to the incline and has a magnitude of 800 N. *Circle on this test sheet* the nearest item for each of the following:
 - A. (7%) The magnitude of the acceleration \mathbf{a}_A of block A is (a) 2.91 m/s². (b) 2.83 m/s². (c) 2.75 m/s². (d) 2.67 m/s². (e) 2.59 m/s². (f) 2.51 m/s².
 - *B.* (7%) The magnitude of the acceleration \mathbf{a}_B of block *B* is (*a*) 3.34 m/s². (*b*) 3.45 m/s². (*c*) 3.56 m/s². (*d*) 3.67 m/s². (*e*) 3.78 m/s². (*f*) 3.88 m/s².
 - *C.* (6%) The magnitude of the tensile force **F** in the cable connecting the blocks *A* and *B* is (*a*) 143.0 N. (*b*) 141.4 N. (*c*) 139.9 N. (*d*) 138.4 N. (*e*) 136.9 N. (*f*) 135.3 N. (*g*) 133.8 N.
- **4.** (20%) Non-numerical problem.
 - A. Describe Chasles' theorem.
 - B. Define the *kinetic energy* of a particle.
 - *C*. Define the *potential energy* of a particle.
 - D. How is the gravitational potential energy of a spacecraft in orbit around the earth defined?