Central-force motion

On the ensface of the earth: $g=9.81 \mathrm{~m} / \mathrm{m}^{2}$

$$
g=32.2 \mathrm{ft} / \mathrm{s}^{2}
$$

中ligh dove the aurfece of the earth:

$$
g<9.81 \mathrm{~m} / \mathrm{h}^{2} \quad g<32.2 \mathrm{ft} / \mathrm{R}^{2}
$$

Qrlit: a cloeed trajectory
τ : period af orbit
Central force F :

$$
\begin{aligned}
m & =\frac{G M m}{r^{2}}=G M m r^{-2}
\end{aligned}
$$

$$
\sum\left[:-F=m\left(\ddot{r}-r \dot{\theta}^{2}\right)\right.
$$

$$
\sum V_{\theta}: \quad 0=m(r \ddot{\theta}+2 \dot{r} \dot{\theta})
$$

$$
\left.\begin{array}{l}
m\left(\ddot{r}-r \dot{\theta}^{2}\right)=-G M m r^{-2} \tag{1}\\
m(r \ddot{\theta}+2 \dot{r} \dot{\theta})=0
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
\ddot{r}-r \dot{\theta}^{2}=-Q M r^{-2} \tag{2}\\
r \ddot{\theta}+2 \dot{r} \dot{\theta}=0
\end{array}\right\} .
$$

$$
\frac{d}{d t}\left(r^{2} \dot{\theta}\right)=2 r \dot{r} \dot{\theta}+r^{2} \ddot{\theta}=r(r \ddot{\theta}+2 \dot{r} \dot{\theta})=r(0)=0
$$

$r^{2} \dot{\theta}=h$ (a contant)

$$
r v_{\theta}=h \quad v \cdot v \cdot \cdots I .
$$

atQ: $v_{\theta}=v_{Q}, r=r_{Q}$
Σ : exeentricity of the comic pection

$$
\vec{v}=\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta}=v_{n} \vec{e}_{r}+v_{\theta} \vec{e}_{\theta}
$$

$$
v_{\theta}=r \dot{\theta} \quad h=r(r \dot{\theta})=r v_{\theta}
$$

$$
\frac{1}{r}=\frac{Q M}{h^{2}}(1+\varepsilon \cos \theta) \text { at } p: v_{\theta}=v_{p}, r=r_{p}
$$

$\varepsilon=0$: circle
$\varepsilon<1$: ellipse

$$
\varepsilon=1 \text { : parabola }
$$

$$
\varepsilon>1 \text { : hypertola }
$$

$$
\begin{gathered}
\frac{1}{r_{p}}+\frac{1}{r_{Q}}=\frac{2 G M}{h^{2}} \quad \varepsilon=\frac{c}{a} \\
\tau=\frac{\pi\left(r_{p}+r_{a}\right) \sqrt{r_{p} r_{Q}}}{h} v_{0} \cdot \cdots \pm . \\
W=W g=\frac{G M p}{R^{2}} \\
T_{2} \quad G M=g R^{2}
\end{gathered}
$$

$$
\begin{array}{ll}
R=3960 \mathrm{mi} & R=6370 \mathrm{~km}=6.37 \mathrm{Mm} \\
R=396 \times 10^{3} \mathrm{mi} & R=6.37 \times 10^{3} \mathrm{~km}
\end{array}
$$

Geortationary satallite:

$$
\text { Caltude }=\text { ? }
$$

$$
\text { ite: } \begin{aligned}
& r_{p}=r_{Q}=r \quad \tau=\frac{\pi(r+r) \sqrt{r r}}{h} \\
& h=\frac{2 \pi r^{2}}{\tau} \quad=\frac{\left.\pi / 2 r^{2}\right)}{h}=\frac{2 \pi r^{2}}{h} \\
& \frac{1}{r}+\frac{1}{r}=\frac{2 Q M}{h^{2}} \quad \frac{3}{r}=\frac{2 G M}{h^{2}} \\
& h^{2}=G M r=\frac{4 \pi^{2} r^{4}}{\tau^{2}} \\
& G M C^{2}=4 \pi^{2} r^{3} \quad g R^{2} \tau^{2}=4 \pi^{2} r^{3}
\end{aligned}
$$

$$
\begin{equation*}
T=24 h=24(3660) / R \tag{c}
\end{equation*}
$$

$$
32.2(3960)^{2}(5280)^{2}(24)^{2}(3600)^{2}=4 \pi^{2} r^{3}
$$

$$
r=1.3859 \times 10^{8} \mathrm{p}^{t}=26247.8 \mathrm{mi}=R+a=3960+a
$$

$$
a=22287 \mathrm{mi}
$$

$a=22.3 \times 10^{3} \mathrm{mi}$

