To find $v_{\text {max }}$

Lar of cosines:

$+\uparrow \Sigma V_{y}: \quad F_{B C} \operatorname{Ain}\left(\gamma-\frac{\pi}{2}\right)-5(9.8)=0$

To find $v_{\min }$

$$
R=6.37 \times 10^{3} \text { term }
$$

(fem (A)

$$
\frac{1}{r_{p}}+\frac{1}{r_{Q}}=-\frac{2 G M}{h_{1}^{2}} \quad h=r v_{\theta}
$$

$$
\frac{1}{r_{p}}+\frac{1}{r_{p}}=\frac{2 g k^{2}}{r_{p}^{2} v_{0, N}^{2}}
$$

$$
g=9.81 \times 10^{-3} \mathrm{~km} / \mathrm{s}^{2}
$$

$\therefore v_{c i v}=\longrightarrow$ Fem $/ \mathrm{R}$
Sm elliptic orbit

$$
\begin{aligned}
& \frac{1}{r_{p}}+\frac{1}{r_{Q}}=\frac{2 G M}{h_{2}^{2}}=\frac{2 g R^{2}}{r_{p}^{2}\left(v_{p}\right)_{\text {Re }}^{2}} \quad \therefore r_{Q}=\square \\
& a_{\text {max }}=r_{Q}-R=\square \quad a_{\text {max }}=\square \mathrm{km}
\end{aligned}
$$

Period of orbit around the elliptic orbit

