13.31

$$
\begin{gathered}
\mu_{k}=0.25 \\
\vec{q}_{A}=1.5 \mathrm{~m} \rightarrow \\
v_{B}=?
\end{gathered}
$$

$$
N=-\frac{3}{4} v_{B}
$$

$$
\begin{gathered}
4\left(\Delta x_{A}\right)+3\left(\Delta x_{B}\right)=0 \\
\Delta x_{A}=-1.5 \\
\left.\frac{24}{25}\right)-(-5.5)+\left(\Delta x_{B}\right)=0 \\
4(-4.5)+\quad \vec{q}_{B}=2 m-7
\end{gathered}
$$

$T_{1}+U_{1 \rightarrow 2}=T_{2}$ primiple of Work\& kinetic energy

$$
\begin{aligned}
& 50(9.81)\left(\frac{24}{25}\right) \quad T_{1}=0, T_{2}=\frac{1}{2}(50)\left(-\frac{3}{4} N_{B}\right)^{2}+\frac{1}{2}(25) v_{B}^{2} \\
& U_{1 \rightarrow 2}= 50(9.81)(-1.5)\left(\frac{7}{25}\right)+\left[0.25(50)(9.81)\left(\frac{24}{25}\right)\right](-1.5)+0 \\
&+25(9.81)(-2)\left(\frac{7}{25}\right)+\left[0.25(25)(9.81)\left(\frac{2 f}{25}\right)\right](-2) \\
&+400(2)+0
\end{aligned}
$$

Work of a force on a body is equal to the force on the body times the displacernat of the body as the direction of the force.

$$
\therefore v_{B}=\square \quad v_{B}=\square \mathrm{m} / \mathrm{s}
$$

