Primiuple of work \& Esinatic energy: $T_{1}+U_{1 \rightarrow 2}=T_{2}$
Conservation of mechanical energy: $T_{1}+V_{1}=T_{2}+V_{2}$
T_{1} : kinetic energy of the body at time 1, $T_{1}=\frac{1}{2} m v_{1}^{2}$
T_{2} :" ".".". $2, T_{2}=\frac{1}{2} m v_{2}^{2}$
$U_{1 \rightarrow 2}$: work done on the body during its motion from position I to position 2
V_{1} : potential energy of the body at position 1 .
V_{2} :
Potential energy of a body at a given position is equal to the amount of work received by the body from the conservative force during its notion from 'ts current position to the reference datum.
($V_{g}=-\frac{G M m}{r}$ for a spacecust where the reverence deter in a $_{\infty} \infty$.)
($V_{e}=\frac{1}{2}$ h x^{2} for a body in the elastic force bield)

$$
\begin{aligned}
& v_{g}=w h_{1} \\
& v_{g}=-w h_{2} \\
& 13.49 \text { (Pub. 13.19) } \\
& T_{1}+V_{1}=T_{2}+V_{2} \\
& 3 \text { (R.D.: 3xplane) } \\
& L=10 \mathrm{~m} \quad k=120 \mathrm{~N} \cdot \mathrm{~m} \\
& m_{C}=20 \mathrm{~kg} \quad v_{A}=0 \quad v_{B}=? \\
& T_{A}+V_{A}=T_{B}+V_{B} \\
& \left\{\begin{array}{l}
T_{A}=0, \\
T_{B}=\frac{1}{2}(20) v_{B}^{2}
\end{array}\right. \\
& V_{A}=\left(V_{A}\right)_{g}+\left(V_{A}\right)_{e} \\
& =20(9.81)(5)+\frac{1}{2}(120)(13-10)^{2} \\
& \overline{A D}=13 \mathrm{~m} \quad V_{e}=\frac{1}{2} k x^{2} \\
& V_{B}=\left(V_{B}\right)_{g}+\left(V_{B}\right)_{e} \\
& \overline{B D}=15 \mathrm{~m} \quad \therefore V_{B}=\square
\end{aligned}
$$

