Acceleration center $Z$
$\vec{a}_{z}=\overrightarrow{0}$
Zip a point of the

$\vec{a}_{A}=\vec{a}_{A / z}+\vec{a}_{B}=\vec{a}_{A / B} \quad$ body, or of the menslese

$$
\vec{a}_{B}=\overrightarrow{a_{B / B}}+\vec{a}_{E}=a_{B / Z}
$$

$\tan \psi=\frac{\overline{A Z} \alpha}{\overline{A Z} \omega^{2}}=\frac{\alpha}{\omega^{2}} \quad \psi=\tan ^{-1}\left(\frac{\alpha}{\omega^{2}}\right)$
$\tan \psi^{\prime}=\frac{\overline{B E} \alpha}{\overline{B Z} \omega^{2}}=\frac{\alpha}{\omega^{2}} \quad \psi^{\prime}=\tan ^{-1}\left(\frac{\alpha}{\omega^{2}}\right)$
If a body is accelerates from rest, then $\omega=0$
$\psi^{\prime}=\psi \quad \psi \omega=0$, then $\psi=\psi^{\prime}=90^{\circ}$
and $\psi=\psi^{\prime}=90^{\circ}$
Ne acceleration center if $\omega=0$. extencios of the body.
15.107


$$
\vec{\omega}_{A B}=2 \mathrm{Rad} / 25
$$

$$
\overrightarrow{\omega_{B D}}=? \quad \overrightarrow{\omega_{D}}=?
$$

By polygon rule: $\overrightarrow{A B}+\overrightarrow{B D}+\overrightarrow{D O}=8 \vec{i}$
Foun-bar linkage in mechanism. Let $Q_{1}, \theta_{2}, \& \theta_{3}$ be the peranetern of the system. note that

$$
\begin{aligned}
& \begin{array}{l}
2\left(-\cos \theta_{1} \vec{i}+\sin \theta_{1} \vec{j}\right)+4\left(\cos \theta_{2} \vec{i}+\sin \theta_{2} \vec{j}\right)+6\left(+\cos \theta_{3} \vec{i}-\sin \theta_{3} \vec{j}\right)
\end{array} \\
& \left.\begin{array}{l}
\vec{i}: \quad-2 \cos \theta_{1}+4 \cos \theta_{2}+6 \cos \theta_{3}=8 \\
\vec{j}: \quad 2 \sin \theta_{1}+4 \sin \theta_{2}-6 \sin \theta_{3}=0
\end{array}\right\} \\
& \sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots \approx \theta \\
& \cos \theta=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}+\cdots \approx 1-\frac{1}{2} \theta^{2} \\
& -2\left(1-\frac{1}{2} \theta_{1}^{2}\right)+4\left(1-\frac{1}{2} Q_{2}^{2}\right)+6\left(1-\frac{1}{2} Q_{3}^{2}\right)=8 \\
& \left.\left(\theta_{1}^{2}-2 \theta_{2}^{2}-3 \theta_{3}^{2}\right)-2+4+6\right)=8 \therefore \theta_{1}^{2}-2 \theta_{2}^{2}-3 \theta_{3}^{2}=0 \\
& 2 \theta_{1}+4 \theta_{2}-6 \theta_{3}=0 \quad \theta_{3}=\frac{1}{3}\left(\theta_{1}+2 \theta_{2}\right) \\
& \theta_{1}^{2}-2 \theta_{2}^{2}-\frac{3}{9}\left(\theta_{1}^{2}+4 \theta_{1} \theta_{2}+4 \theta_{2}^{2}\right)=0 \\
& 9 Q_{1}^{2}-18 Q_{2}^{2}-3 Q_{1}^{2}-12 Q_{1} Q_{2}-12 \theta_{2}^{2}=0 \\
& -30 \theta_{2}^{2}-12 \theta_{1} \theta_{2}+6 Q_{1}^{2}=0, \quad 5 \theta_{2}^{2}+2 \theta_{1} \theta_{2}-\theta_{1}^{2}=0 \\
& \theta_{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 Q_{1} \pm \sqrt{4 Q_{1}^{2}+20 \theta_{1}{ }^{2}}}{10} \\
& =\frac{-2 \theta_{1} \pm 2 \sqrt{6} \theta_{1}}{10}=\frac{1}{5}\left(-\theta_{1} \pm \sqrt{6} \theta_{1}\right) \\
& \theta_{2}=\frac{1}{5}(-1 \pm \sqrt{6}) \theta_{1} \quad \theta_{3}=\frac{1}{3}\left(\theta_{1}+2 \theta_{2}\right)=\square \theta_{1} \\
& \dot{\theta}_{2}=\frac{1}{5}(-1 \pm \sqrt{6})(-2) \quad \dot{\theta}_{3}=\frac{1}{3}\left(\dot{\theta}_{1}+2 \dot{\theta}_{2}\right) \\
& \dot{\theta}_{1}=-2, \quad \dot{\theta}_{2}=\frac{1}{5}(-1+\sqrt{6})(-2), \quad \dot{\theta}_{3}=\frac{1}{3}\left(\dot{\theta}_{1}+2 \dot{\theta}_{2}\right) \\
& \dot{\theta}_{1}=-2 \quad \dot{\theta}_{2}=\frac{1}{5}(-1-\sqrt{6})(-2), \quad \dot{\theta}_{3}=\frac{1}{3}\left(\dot{\theta},+2 \dot{\theta}_{2}\right) \\
& \omega_{B D}=\dot{\theta}_{2} \quad \vec{\omega}_{B D}=\dot{\theta}_{2} \text { if } \dot{\theta}_{2} \text { is posture } \\
& v_{D}=6 \dot{\theta}_{3} \quad \vec{v}_{D}=6 \dot{\theta}_{3} \uparrow \text { if } \dot{\theta}_{3} \text { is positive }
\end{aligned}
$$ the constraint condition

