Principle of work \& kinetic energy for rigel bodies in plane motion: $T_{1}+U_{1 \rightarrow 2}=T_{2}$
$U_{1 \rightarrow 2}=$ work done on the rigid body, moving from portion 1
to position 2 , by foresee and moments
$T_{1}=$ feinetio energy of the rigid body at position 1

$$
T_{2}="
$$

Work of a force on a body is equal to the force on the body times the displacement of the body in the direction of the force. $U_{F}=F q_{11}$
Work of a moment on a body in equal to the moment on the body times the angular displacement of the body in the direction of the momat (ar defined ll the agist hand rale).

$$
\begin{aligned}
& U_{M}=M(\theta \theta)_{M} \\
& d T=\frac{1}{2}(d m)(r \omega)^{2}=\frac{1}{2} r^{2} \omega^{2} d m \\
& T=\frac{\omega^{2}}{2} \int r^{2} d m=\frac{\omega^{2}}{2} I_{c} \quad T=\frac{1}{2} I_{c} \omega^{2}
\end{aligned}
$$

C (velocity cater of the lady)
By PAT, we have $I_{c}=\bar{I}+m \bar{r}^{2} \quad \bar{r} \omega=\bar{v}$

$$
\begin{gathered}
T=\frac{1}{2}\left(\bar{I}+m \bar{r}^{2}\right) \omega^{2}=\frac{1}{2} \bar{I} \omega^{2}+\frac{1}{2} m(\bar{r} \omega)^{2}=\frac{1}{2} \bar{I} \omega^{2}+\frac{1}{2} m \bar{v}^{2} \\
T=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \bar{I} \omega^{2}
\end{gathered}
$$

Fore conservation system, $T_{1}+V_{1}=T_{2}+V_{2}$ OO

$$
\vec{\omega}_{1}=10 \mathrm{red} / \mathrm{/2}
$$

300 ln

(B) Loll.
(A) (b) (em) A

$$
\therefore \quad N=\square \text { rear }
$$

$$
\begin{aligned}
& T_{1}+U_{(\rightarrow 2}=T_{2} \\
& T_{1}= \frac{1}{2}\left[\frac{300}{32.2}(1.5)^{2}\right](10)^{2} \\
&+\frac{1}{2}\left(\frac{20}{32.2}\right)[2(10)]^{2} \\
& U_{H \rightarrow 2}=-20[2(2 \pi N)], T_{2}=0
\end{aligned}
$$

$m=10 \mathrm{~kg} \quad \vec{\omega}_{1}=6 \mathrm{rat} / \mathrm{es}$

$$
\vec{\omega}_{1}=6 \mathrm{rat} / \mathrm{ss}
$$ $\theta_{1}=0 \quad k=$?

$$
T_{1}+V_{1}=T_{2}+V_{2}
$$

$$
\left.T_{1}=\frac{1}{2} I_{0} \omega_{1}^{2}=\frac{1}{2}\left[\frac{1}{12}(10)(0.8)^{2}+10(0.4)\right]^{2}\right)(6)^{2}
$$

$$
V_{2}=0+\frac{1}{2} k(0.1)^{2} \quad V_{1}=1
$$

$$
T_{2}=0
$$

$$
\therefore k=\square
$$

$$
k=\square \mathrm{N} / \mathrm{m}
$$

