17.64

$$
\omega=\$ \% / \mathrm{e} \cdot \frac{\pi \mathrm{res}}{\frac{180^{\circ}}{180^{\circ}}}=\frac{\pi}{36} \pi \mathrm{ra} / \mathrm{k}
$$

$+5 \sum M_{A}=0: \quad M_{A}^{F}=$ moneat dua to \vec{F} about A

$$
-M_{A}^{F}+2[5000(9.81) \cos \theta]-0.75[5000(9.81) \sin \theta]=0
$$

$$
M_{A}^{F}=9.81 \times 10^{4} \cos \theta-3750(9.81) \sin \theta
$$

$$
P_{\text {ower }}=P=M_{A}^{F} \omega=\frac{\pi}{36}\left[9.81 \times 10^{4} \cos \theta-3750(9.81) \sin \theta\right]
$$

$$
\left.P\right|_{\theta=30^{\circ}}=\frac{\pi}{36}\left[9.81 \times 10^{4} \cos 30^{\circ}-3750(9.81) \sin 30^{\circ}\right] \mathrm{N} \cdot \mathrm{~m} / \mathrm{s}=\square \mathrm{w}
$$

$$
P_{\text {max }}=\left(M_{A}^{F}\right)_{\text {max }} \omega=9.81 \times 10^{4}\left(\frac{\pi}{36}\right) \mathrm{N} \cdot \mathrm{am} / \mathrm{R}=\square \mathrm{W}
$$

$$
\left.P\right|_{\theta=30^{\circ}}=\square w \quad P_{\max }=\square w
$$

$$
\begin{aligned}
& \delta \theta=3\left(\delta x_{0}\right) \\
& \delta U: \quad 10 \delta x_{R}= \frac{(50+29+25+30)}{32.2} a_{0}\left(8 x_{R}\right) \\
&+\frac{1}{2}\left(\frac{26+25+30}{32.2}\right)\left(\frac{4}{12}\right)^{2}\left(\frac{a_{0}}{4 / 12}\right)\left[3\left(\partial x_{0}\right)\right] \\
& \therefore a_{0}= \vec{a}_{D}=\infty \mathrm{bt} / \mathrm{z}^{2}<
\end{aligned}
$$

