17.90 on page 796

$$
\mu_{2}=0.25, \quad \mu_{K}=0.2
$$

$$
\vec{q}_{B}=1 m \uparrow \text {, Aystan released from rest }
$$

$$
\vec{v}_{B}=?
$$

Constraint condition:

$$
\begin{gathered}
x_{B}+x_{A}+x_{A}=k \\
2 x_{A}+x_{B}=k \quad 2\left(\Delta x_{A}\right)+\Delta x_{B}=0 \\
\overrightarrow{\Delta x_{B}}=\vec{q}_{B}=1 \mathrm{~m} \uparrow \quad \therefore \Delta x_{B}=-1 \mathrm{~m} \\
2\left(\Delta x_{A}\right)+(-1)=0 \quad \therefore \Delta x_{A}=0.5 \mathrm{~m}
\end{gathered}
$$

We may let the tensions in the segments of the cord be $F_{1}, F_{2}, \& F_{3}$, as indicated.

$$
\begin{align*}
& \frac{T_{1}+U_{1 \rightarrow 2}=T_{2} \text { for block } B}{0+\left[2(9.81)(-1)+F_{1}(1)\right]=\frac{1}{2}(2) v_{B}^{2}} \\
& \frac{T_{1}+U_{1 \rightarrow 2}=T_{2} \text { for disk } A}{0+\left[F_{2}(-1)+10(9.81)(0.5)\right]=\frac{1}{2}\left[\frac{1}{2}(10)(0.1)^{2}+10(0.1)^{2}\right]\left(\frac{v_{B}}{0.2}\right)^{2} \cdots} \tag{1}
\end{align*}
$$

Belt friction in statics for belt friction around drum D

$$
\begin{align*}
& F_{2}=F_{1} e^{0.2 \pi} \quad\left(T_{2}=T_{1} e^{\mu_{k} \beta}\right) \cdots \tag{3}\\
& \therefore F_{1}=\square, F_{2}=\square, v_{B}=\square \quad \vec{v}_{B}=\square \uparrow
\end{align*}
$$

