Geostationary satellite: its altitude

$$
\begin{aligned}
& r=a+R \quad R=3960 \mathrm{~mJ} \\
& \frac{1}{r_{p}}+\frac{1}{r_{Q}}=\frac{2 g M}{h^{2}}, \tau=\frac{\pi\left(\left(P+R_{Q}\right) \sqrt{P_{p} r_{Q}}\right.}{h} \\
& \frac{1}{r}+\frac{1}{r}=\frac{2 g R^{2}}{h^{2}}, \quad \frac{2}{r}=\frac{2 g R^{2}}{h^{2}} \\
& h^{2}=g R^{2} r \quad \tau=\frac{\pi(2 r) r}{h}=\frac{2 \pi r^{2}}{h}
\end{aligned}
$$

$$
\begin{align*}
& h=\frac{2 \pi r^{2}}{\tau}, h^{2}=\frac{4 \pi^{2} r^{4}}{\tau^{2}} \quad \text { mi, }
\end{aligned} \begin{aligned}
& g R^{2} r=\frac{4 \pi^{2} r^{4} 4^{3}}{\tau^{2}}, r^{3}=\frac{g R^{2} \tau^{2}}{4 \pi^{2}} \tag{p}\\
& r^{3}=\frac{\frac{32.2}{5280}(3960)^{2}[24(60)(60)]^{2}}{4 \pi^{2}}, r=26247.8 \mathrm{mi} \\
&=a+3960 \mathrm{mi} \\
& \therefore a=22,287 \mathrm{mi} \quad a=22.3 \times 10^{3} \mathrm{mi}
\end{align*}
$$

