

MEEG 3013

Name:	
	(Underline your last name .)
ID#:	

Final Exam ()

Circle the correct or nearest item in each of the following: (10% each)

- **1.** A state of stress at a point is obtained by the superposition of two states of stress at the same point as shown. The value of σ_x is
 - (a) 4 ksi. (b) -4 ksi. (c) 6 ksi. (d) -6 ksi. (e) 8 ksi. (f) -8 ksi. (g) 10 ksi. (h) -10 ksi. (i) 0.
- **2.** A state of stress at a point is obtained by the superposition of two states of stress at the same point as shown. The value of σ_y is
 - (a) 4 ksi. (b) -4 ksi. (c) 6 ksi. (d) -6 ksi. (e) 8 ksi. (f) -8 ksi. (g) 10 ksi. (h) -10 ksi. (i) 0.

Fig. P1 and P2

Fig. P3 and P4

- 3. A square box beam is made of two 20×80 -mm planks and two 20×120 -mm planks nailed together as shown, where s = 50 mm and that the allowable shearing force in each nail is 450 N. The largest allowable vertical shear V in the beam is
 - (a) 3.24 kN. (b) 3.00 kN. (c) 2.77 kN. (d) 2.54 kN. (e) 2.31 kN. (f) 2.08 kN. (g) 1.849 kN.
- **4.** A square box beam is made of two 20×80 -mm planks and two 20×120 -mm planks nailed together as shown, where s = 50 mm and that the allowable shearing force in each nail is 450 N. The corresponding maximum vertical shearing stress τ_{max} in the beam is
 - (a) 443 kPa. (b) 507 kPa. (c) 570 kPa. (d) 633 kPa. (e) 697 kPa. (f) 760 kPa. (g) 823 kPa.

- **5.** A timber beam is supported and loaded as shown, where w = 76 kN/m, the allowable bending stress is 12 MPa, and the side view of the cross section of the beam is as depicted. The required minimum value of the depth h of the beam is
 - (a) 429 mm. (b) 458 mm. (c) 485 mm. (d) 510 mm. (e) 535 mm. (f) 558 mm. (g) 581 mm.

MEEG 3013

Name: _____(Underline your last name.)

Final Exam ()

ID#: _____

6. The beam shown has a constant flexural rigidity EI. The reaction force at support A is

(a)
$$\frac{15M_0}{24L}\uparrow$$
. (b) $\frac{15M_0}{24L}\downarrow$. (c) $\frac{13M_0}{24L}\uparrow$. (d) $\frac{13M_0}{24L}\downarrow$. (e) $\frac{7M_0}{24L}\downarrow$. (f) $\frac{2M_0}{24L}\uparrow$. (g) $\frac{2M_0}{24L}\downarrow$.

Fig. P6 and P7

Fig. P8, P9, and P10

7. The beam shown has a constant flexural rigidity EI. The reaction force at support B is

(a)
$$\frac{15M_0}{24L}\uparrow$$
. (b) $\frac{15M_0}{24L}\downarrow$. (c) $\frac{13M_0}{24L}\uparrow$. (d) $\frac{13M_0}{24L}\downarrow$. (e) $\frac{7M_0}{24L}\downarrow$. (f) $\frac{2M_0}{24L}\uparrow$. (g) $\frac{2M_0}{24L}\downarrow$.

8. The beam ABC of length 2L has a constant flexural rigidity EI and carries a moment \mathbf{M}_0 at A and a distributed load with intensity w in the segment BC as shown, where $\mathbf{M}_0 = 4wL^2$ \circlearrowleft . The reaction at B of the beam is

(a)
$$\frac{51wL}{8}$$
 \(\hat{\chi}\). (b) $\frac{57wL}{8}$ \(\hat{\chi}\). (c) $\frac{63wL}{8}$ \(\hat{\chi}\). (d) $\frac{69wL}{8}$ \(\hat{\chi}\). (e) $\frac{75wL}{8}$ \(\hat{\chi}\). (f) $\frac{81wL}{8}$ \(\hat{\chi}\). (g) $\frac{87wL}{8}$ \(\hat{\chi}\).

9. The beam ABC of length 2L has a constant flexural rigidity EI and carries a moment \mathbf{M}_0 at A and a distributed load with intensity w in the segment BC as shown, where $\mathbf{M}_0 = 4wL^2$ \circlearrowleft . The deflection at A of the beam is

(a)
$$-\frac{125wL^4}{48EI}$$
. (b) $-\frac{143wL^4}{48EI}$. (c) $-\frac{161wL^4}{48EI}$. (d) $-\frac{179wL^4}{48EI}$. (e) $-\frac{197wL^4}{48EI}$. (f) $-\frac{215wL^4}{48EI}$.

(g)
$$-\frac{233wL^4}{48EI}$$
. (h) $-\frac{251wL^4}{48EI}$.

10. The beam ABC of length 2L has a constant flexural rigidity EI and carries a moment \mathbf{M}_0 at A and a distributed load with intensity w in the segment BC as shown, where $\mathbf{M}_0 = 4wL^2$ \circlearrowleft . The slope at A of the beam is

(a)
$$\frac{419wL^3}{48EI}$$
. (b) $\frac{389wL^3}{48EI}$. (c) $\frac{359wL^3}{48EI}$. (d) $\frac{329wL^3}{48EI}$. (e) $\frac{299wL^3}{48EI}$. (f) $\frac{269wL^3}{48EI}$. (g) $\frac{239wL^3}{48EI}$.