MEEG 3013

Name: \qquad
Final Exam ()
ID\#:
(Underline your last name.)

Circle the correct or nearest item in each of the following: (10% each)

1. A state of stress at a point is obtained by the superposition of two states of stress at the same point as shown. The value of σ_{x} is
(a) 4 ksi .
(b) -4 ksi .
(c) 6 ksi .
(d) -6 ksi .
(e) 8 ksi .
(f) -8 ksi .
(g) 10 ksi.
(h) -10 ksi . (i) 0 .
2. A state of stress at a point is obtained by the superposition of two states of stress at the same point as shown. The value of σ_{y} is
(a) 4 ksi .
(b) -4 ksi .
(c) 6 ksi .
(d) -6 ksi .
(e) 8 ksi .
(f) -8 ksi . (g) 10 ksi .
(h) -10 ksi .
(i) 0 .

Fig. P1 and P2

Fig. P3 and P4
3. A square box beam is made of two $20 \times 80-\mathrm{mm}$ planks and two $20 \times 120-\mathrm{mm}$ planks nailed together as shown, where $s=50 \mathrm{~mm}$ and that the allowable shearing force in each nail is 450 N . The largest allowable vertical shear V in the beam is
(a) 3.24 kN .
(b) 3.00 kN .
(c) 2.77 kN .
(d) 2.54 kN .
(e) 2.31 kN .
(f) 2.08 kN .
(g) 1.849 kN .
4. A square box beam is made of two $20 \times 80-\mathrm{mm}$ planks and two $20 \times 120-\mathrm{mm}$ planks nailed together as shown, where $s=50 \mathrm{~mm}$ and that the allowable shearing force in each nail is 450 N . The corresponding maximum vertical shearing stress $\tau_{\text {max }}$ in the beam is
(a) 443 kPa .
(b) 507 kPa .
(c) 570 kPa .
(d) 633 kPa .
(e) 697 kPa . (f) 760 kPa .
(g) 823 kPa .

Fig. P5
5. A timber beam is supported and loaded as shown, where $w=76 \mathrm{kN} / \mathrm{m}$, the allowable bending stress is 12 MPa , and the side view of the cross section of the beam is as depicted. The required minimum value of the depth h of the beam is
(a) 429 mm .
(b) 458 mm .
(c) 485 mm .
(d) 510 mm .
(e) 535 mm .
(f) 558 mm .
(g) 581 mm .

MEEG 3013

Final Exam ()

Name: \qquad
ID\#: \qquad
6. The beam shown has a constant flexural rigidity EI. The reaction force at support A is
(a) $\frac{15 M_{0}}{24 L} \uparrow$.
(b) $\frac{15 M_{0}}{24 L} \downarrow$.
(c) $\frac{13 M_{0}}{24 L} \uparrow$.
(d) $\frac{13 M_{0}}{24 L} \downarrow$.
(e) $\frac{7 M_{0}}{24 L} \downarrow$.
(f) $\frac{2 M_{0}}{24 L} \uparrow$.
(g) $\frac{2 M_{0}}{24 L} \downarrow$.

Fig. P6 and P7

Fig. P8, P9, and P10
7. The beam shown has a constant flexural rigidity $E I$. The reaction force at support B is
(a) $\frac{15 M_{0}}{24 L} \uparrow$.
(b) $\frac{15 M_{0}}{24 L} \downarrow$.
(c) $\frac{13 M_{0}}{24 L} \uparrow$.
(d) $\frac{13 M_{0}}{24 L} \downarrow$.
(e) $\frac{7 M_{0}}{24 L} \downarrow$.
(f) $\frac{2 M_{0}}{24 L} \uparrow$.
(g) $\frac{2 M_{0}}{24 L} \downarrow$.
8. The beam $A B C$ of length $2 L$ has a constant flexural rigidity $E I$ and carries a moment \mathbf{M}_{0} at A and a distributed load with intensity w in the segment $B C$ as shown, where $\mathbf{M}_{0}=4 w L^{2} U$. The reaction at B of the beam is
(a) $\frac{51 w L}{8} \uparrow$.
(b) $\frac{57 w L}{8} \uparrow$.
(c) $\frac{63 w L}{8} \uparrow$.
(d) $\frac{69 w L}{8} \uparrow$.
(e) $\frac{75 w L}{8} \uparrow$.
(f) $\frac{81 w L}{8} \uparrow$.
(g) $\frac{87 w L}{8} \uparrow$.
9. The beam $A B C$ of length $2 L$ has a constant flexural rigidity $E I$ and carries a moment \mathbf{M}_{0} at A and a distributed load with intensity w in the segment $B C$ as shown, where $\mathbf{M}_{0}=4 w L^{2} \cup$. The deflection at A of the beam is
(a) $-\frac{125 w L^{4}}{48 E I}$.
(b) $-\frac{143 w L^{4}}{48 E I}$.
(c) $-\frac{161 w L^{4}}{48 E I}$.
(d) $-\frac{179 w L^{4}}{48 E I}$.
(e) $-\frac{197 w L^{4}}{48 E I}$.
(f) $-\frac{215 w L^{4}}{48 E I}$.
(g) $-\frac{233 w L^{4}}{48 E I}$.
(h) $-\frac{251 w L^{4}}{48 E I}$.
10. The beam $A B C$ of length $2 L$ has a constant flexural rigidity $E I$ and carries a moment \mathbf{M}_{0} at A and a distributed load with intensity w in the segment $B C$ as shown, where $\mathbf{M}_{0}=4 w L^{2} U$. The slope at A of the beam is
(a) $\frac{419 w L^{3}}{48 E I}$.
(b) $\frac{389 w L^{3}}{48 E I}$.
(c) $\frac{359 w L^{3}}{48 E I}$.
(d) $\frac{329 w L^{3}}{48 E I}$.
(e) $\frac{299 w L^{3}}{48 E I}$.
(f) $\frac{269 w L^{3}}{48 E I}$.
(g) $\frac{239 w L^{3}}{48 E I}$.

