MEEG 3013 Quiz #5

A timber beam is shown. (a) Using singularity functions, find the magnitude and location of the maximum bending moment M_{max} in the beam. (b) If $\sigma_{\text{all}} = 12$ MPa and only beams with cross section of 100-mm width and depth h varying from 300 mm to 500 mm in 10-mm increments are available, select the most economical cross section that can be used.

$$A_y = 27 \text{ kN } \uparrow$$
 ② $(C_y = 69 \text{ kN } \uparrow)$
 $q = -20 < x >^{-2} + 27 < x >^{-1} - 40 < x - 1.2 >^{0}$ ②
 $V = -20 < x >^{-1} + 27 < x >^{0} - 40 < x - 1.2 >^{1}$ ①
 $M = -20 + 27x - 20 < x - 1.2 >^{2}$ ①
 $V_D = 0 \& M_D = 21.5125 \text{ kN} \cdot \text{m at } x_D = 1.875 \text{ m from } A$

- (a) $M_{\text{max}} = 21.5 \text{ kN} \cdot \text{m}$ at $x_D = 1.875 \text{ m}$ from A. ②
- (b) : $h_{\text{min}} = 328 \text{ mm}$, we select the one with h = 330 mm.