MEEG 3013 Quiz #5.m15.072

- **1.** ③ Define the values of the singularity function $\langle x-a\rangle^n$.
- 2. \bigcirc A timber beam is shown. (a) Determine the reactions \bigcirc and \bigcirc at supports A and C. (b) Using singularity functions, find the location \bigcirc and magnitude \bigcirc of the maximum bending moment in the beam occurring at D. (c) Knowing that the available stock consists of beams with an allowable stress of 12 MPa and a rectangular cross section of 30-mm width and depth h varying from 80 mm to 160 mm in 10-mm increments, determine the value of \bigcirc for most economical cross section.

1.
$$\langle x-a \rangle^n = (x-a)^n$$
 if $x-a \ge 0$ & $n > 0$
 $\langle x-a \rangle^n = 1$ if $x-a \ge 0$ & $n = 0$ 3
 $\langle x-a \rangle^n = 0$ if $x-a < 0$ or $n < 0$

2. (a) **FBD** & Equilibrium: $A = 695 N \uparrow \& C = 865 N \uparrow$.

(b)
$$q = -200 < x >^{-2} + 695 < x >^{-1} - 320 < x >^{1} + 320 < x - 1.5 >^{1}$$

 $V = -200 < x >^{-1} + 695 < x >^{0} - 160 < x >^{2} + 160 < x - 1.5 >^{2}$ ②
$$M = -200 < x >^{0} + 695 < x >^{1} - \frac{160}{3} < x >^{3} + \frac{160}{3} < x - 1.5 >^{3}$$

Noting that M is maximum when V = 0, we get

$$x_D = 2.1979 \text{ m}$$
 $x_D = 2.20 \text{ m}$ ① $M_{\text{max}} = M_D = 779.4 \text{ N} \cdot \text{m}$ ① $M_D = 779 \text{ N} \cdot \text{m}$ ①

(c) $h_{\min} = 0.11397$ m. Choose beam with h = 120 mm.