MEEG 3013 Quiz #5.m20.091

- **1.** ④ Define the values of (a) $< x a >^n$, (b) $\int_{-\infty}^{x} < x a >^n dx$.
- **2.** © A timber beam is shown. (a) Determine the reactions $\frac{A}{A}$ and $\frac{C}{A}$ of the maximum bending moment at $\frac{C}{A}$. (c) Knowing that the available stock consists of beams with an allowable stress of 14 MPa and a rectangular cross section of 30-mm width and depth $\frac{C}{A}$ varying from 80 mm to 160 mm in 10-mm increments, determine the value of $\frac{C}{A}$ for most economical cross section.

- 1. $< x a >^n = (x a)^n$ if $x a \ge 0$ & n > 0 $< x - a >^n = 1$ if $x - a \ge 0$ & $n \le 0$ $< x - a >^n = 0$ if x - a < 0 or n < 0 $\int_{-\infty}^{x} < x - a >^n dx = \frac{1}{n+1} < x - a >^{n+1}$ if n > 0 $\int_{-\infty}^{x} < x - a >^n dx = < x - a >^{n+1}$ if $n \le 0$
- **2.** (a) FBD & Equilibrium: $A = 875 \text{ N} \uparrow \& C = 685 \text{ N} \uparrow$. ①
 - (b) $q = 875 < x >^{-1} 480 < x >^{0} + 320 < x 2.5 >^{1}$ $V = 875 < x >^{0} - 480 < x >^{1} + 160 < x - 2.5 >^{2}$ ② $M = 875 < x >^{1} - 240 < x >^{2} + \frac{160}{3} < x - 2.5 >^{3}$

Noting that M is maximum when V = 0, we get

$$x_D = 1.82291\dot{6} \text{ m}$$
 $x_D = 1.823 \text{ m}$ ①

(c) $h_{\min} = 0.10674 \text{ m}$. Choose beam with h = 110 mm.