

MEEG	3	0	1	3
------	---	---	---	---

Name: (Underline your last name.)

Test III ()

ID #:

1. (30%) The beam AB of length L has a constant flexural rigidity EI and are loaded as shown. Using **singularity functions**, determine for this beam (a) the reaction A_y at A, (b) the slope y'_A at A, (c) the slope y'_C at C, (d) the deflection y_C at C.

- **2.** (30%) Using **conjugate beam method**, solve Problem 1.
- **3.** The beam ABC of length 2L has a constant flexural rigidity EI and carries a moment \mathbf{M}_0 at A and a distributed load with intensity w in the segment BC as shown, where $\mathbf{M}_0 = 2wL^2$ **5.** Circle on this test sheet the nearest item for each of the following:

A. (5%) The reaction at B of the beam is

$$(a) \ \frac{45wL}{8} \uparrow. \ (b) \ \frac{39wL}{8} \uparrow. \ (c) \ \frac{33wL}{8} \uparrow. \ (d) \ \frac{27wL}{8} \uparrow. \ (e) \ \frac{21wL}{8} \uparrow. \ (f) \ \frac{15wL}{8} \uparrow. \ (g) \ \frac{9wL}{8} \uparrow.$$

B. (5%) The deflection at A of the beam is

(a)
$$-\frac{17wL^4}{48EI}$$
. (b) $-\frac{35wL^4}{48EI}$. (c) $-\frac{53wL^4}{48EI}$. (d) $-\frac{71wL^4}{48EI}$. (e) $-\frac{89wL^4}{48EI}$. (f) $-\frac{107wL^4}{48EI}$. (g) $-\frac{125wL^4}{48EI}$.

C. (5%) The slope at A of the beam is

$$(a)\ \frac{179wL^3}{48EI}.\ \ (b)\ \frac{149wL^3}{48EI}.\ \ (c)\ \frac{119wL^3}{48EI}.\ \ (d)\ \frac{89wL^3}{48EI}.\ \ (e)\ \frac{59wL^3}{48EI}.\ \ (f)\ \frac{29wL^3}{48EI}.\ \ (g)\ -\frac{wL^3}{48wEI}.$$

D. (5%) The slope at B of the beam is

(a)
$$-\frac{wL^3}{48EI}$$
. (b) $\frac{5wL^3}{48EI}$. (c) $\frac{11wL^3}{48EI}$. (d) $\frac{17wL^3}{48EI}$. (e) $\frac{23wL^3}{48EI}$. (f) $\frac{29wL^3}{48EI}$. (g) $\frac{35wL^3}{48EI}$.

4. (20%) Non-numerical problem.