

MEEG 3013

Test III ()

Name:	
	(Underline your last name.)
ID #:	

1. (30%) The beam shown has a constant flexural rigidity *EI*. Using *moment-area theorems*, determine (a) the reaction forces **A**, **B**, and **D** at the three supports, (b) the slope θ_C and deflection y_C at C.

- **2.** (30%) Using *conjugate beam method*, solve Problem 1.
- 3. (20%) The beam ABC of length 2L has a constant flexural rigidity EI and carries a moment \mathbf{M}_0 at A and a distributed load with intensity w in the segment BC as shown, where $\mathbf{M}_0 = 5wL^2$ \circlearrowleft . Circle on this test sheet the nearest item for each of the following:
 - **A.** So The reaction at B of the beam is

(a)
$$\frac{51wL}{8}\uparrow$$
. (b) $\frac{57wL}{8}\uparrow$. (c) $\frac{63wL}{8}\uparrow$. (d) $\frac{69wL}{8}\uparrow$. (e) $\frac{75wL}{8}\uparrow$. (f) $\frac{81wL}{8}\uparrow$. (g) $\frac{87wL}{8}\uparrow$.

B. 5 The deflection at A of the beam is

(a)
$$-\frac{125wL^4}{48EI}$$
. (b) $-\frac{143wL^4}{48EI}$. (c) $-\frac{161wL^4}{48EI}$. (d) $-\frac{179wL^4}{48EI}$. (e) $-\frac{197wL^4}{48EI}$. (f) $-\frac{215wL^4}{48EI}$. (g) $-\frac{233wL^4}{48EI}$.

C. 5 The slope at A of the beam is

(a)
$$\frac{419wL^3}{48EI}$$
. (b) $\frac{389wL^3}{48EI}$. (c) $\frac{359wL^3}{48EI}$. (d) $\frac{329wL^3}{48EI}$. (e) $\frac{299wL^3}{48EI}$. (f) $\frac{269wL^3}{48EI}$. (g) $-\frac{239wL^3}{48EI}$.

D. \bigcirc The slope at B of the beam is

(a)
$$-\frac{77wL^3}{48EI}$$
. (b) $\frac{71wL^3}{48EI}$. (c) $\frac{65wL^3}{48EI}$. (d) $\frac{59wL^3}{48EI}$. (e) $\frac{53wL^3}{48EI}$. (f) $\frac{47wL^3}{48EI}$. (g) $\frac{41wL^3}{48EI}$.

- **4.** (20%) Non-numerical problem.
 - A. ① Let C and D be two points of a beam AB having a length L and a constant flexural rigidity EI, where D is to the right of C. Assume that this beam is simply supported at A and B and a concentrated force P acts at the midpoint of the beam. (a) Draw the deflected beam and $\theta_{D/C}$, $t_{D/C}$, and $t_{C/D}$; (b) describe how to compute $\theta_{D/C}$ and $t_{D/C}$ according to the demoment-area theorems.