Show thet $\tau_{x y}=\tau_{y x}$ the axicto which the atree in parcallel

Stecte of atran at point 0
For squil. of the element, we write

$$
\begin{aligned}
& +\Im Z M_{0}=0: \\
& d x\left(\tau_{y y} d y\right)-d y\left(\tau_{y x} d x\right)=0 \\
& \tau_{x y} d x x_{x y}-\tau_{y_{x}} d y d x=0 \\
& \therefore \tau_{x y}-\tau_{y x}=0 \\
& \tau_{x y}=\tau_{y x} \text { Q.E.D. }
\end{aligned}
$$

$$
\tau=\frac{q}{t} \quad \tau=\frac{\overline{V Q}}{I t}
$$

avorage ahearing streas

6.21
(M)

$$
\tau_{a}=? \quad \tau_{b}=?
$$

$$
\tau=\frac{V Q}{I t}
$$

Whe POM \& POM ${ }_{2}$ to find $\bar{y}=65 \mathrm{~mm}$
we PAT to find $I=5.8133 \times 10^{-6} \mathrm{~m}^{4}$
Tofind $\tau_{a}: \quad A y=B_{y}=90 \mathrm{kN}=90 \times 10^{3} \mathrm{~N}$

$$
\begin{aligned}
& V=90 \times 10^{3} \mathrm{~N}, \quad I=5.8133 \times 10^{-6} \mathrm{~m}^{4}, \quad t=40 \mathrm{~mm}=0.04 \mathrm{~m} \\
& Q=0.025(0.16)(0.02) \mathrm{m}^{3} \quad \therefore \tau_{a}=\square \mathrm{N} / \mathrm{m}^{2} \quad \tau_{a}=\square \mathrm{Pa}
\end{aligned}
$$

T_{0} find τ_{p} :
V, I same an dore $t=20 \mathrm{mh}=0.02 \mathrm{~m}$

$$
Q=(0.665-0.015)(0.02)(0.03) \mathrm{m}^{3} \quad \therefore T_{l}=\square \mathbb{N} / \mathrm{m}^{2} T_{l_{0}} \square P_{a}
$$

