Longitudinal phear on a bean element of arbitrary shape

$$
t_{\rightarrow} \Sigma F_{\pi}=0: \int \sigma_{c} d A-\int \sigma_{0} d A+\Delta H=0
$$

$$
\Delta H=\int \sigma_{0} d A-\int \sigma_{c} d A=\int\left(\sigma_{0}-\sigma_{c}\right) d A
$$

$\Delta H=\int\left(\frac{M_{0} y}{I}-\frac{M_{c} y}{I}\right) d A=\frac{M_{0}-M_{c}}{I} \int y d A=\frac{\Delta M}{I} Q$

$\Delta H=\frac{d M}{d x} \frac{Q}{I} \Delta x=V \frac{Q}{I} \Delta x$
$q=\frac{\Delta H}{\Delta x}=\frac{V Q}{I}$

$$
q=\frac{V Q}{I} \quad V . M . .
$$

q : averese longitudinal shear force per unit length of bean
Q: first moment of the area between the line of (lear) eat an the outer fibers $\left(Q=\bar{y}_{1} A_{1}\right)$
I: moment of inertia of the entire area about the ventral axis
 $V=$ vertical shear in the bean at c

$$
\begin{gathered}
V=1200 \mathrm{ll} \quad F_{R}=75 l b \quad R=? \\
F_{R}=q R=\frac{V Q R}{I} \\
75=\frac{1200(5-1)(2)(2) \mathrm{s}}{\frac{1}{12}(6)(10)^{3}-\frac{1}{12}(2)(6)^{3}(2)} \quad \therefore R=0 \\
A=\text { in. }
\end{gathered}
$$

To find τ_{l} : Make a cut as shown.

