

$$
\begin{aligned}
& \vec{A}=? \quad y_{c}=? \\
& q=A_{y}\langle x\rangle^{-1}-M_{0}\left\langle x-\frac{L}{2}\right\rangle^{-2} \\
& V=A_{y}\langle x\rangle^{0}-M_{0}\left\langle x-\frac{L}{2}\right\rangle^{-1} \\
& E I y^{\prime \prime}=M=A_{y}\langle x\rangle^{\prime}-M_{0}\left\langle x-\frac{L}{2}\right\rangle^{0} \\
& E \pm y^{\prime}=\frac{A_{2}}{2}\langle x\rangle^{2}-M_{0}\left\langle x-\frac{L}{2}\right\rangle^{\prime}+c,
\end{aligned}
$$

unknowns: $A_{y}, C_{1}, \& C_{2}$

$$
E I y=\frac{A y}{6}\langle x\rangle^{3}-\frac{M_{0}}{2}\left\langle x-\frac{c}{2}\right\rangle^{2}+c_{1} x+c_{2}
$$

B.C.(1) $y(0)=0: \cdots, \quad c_{2}=\square, c_{1}=\square, A_{y}=0$
$\left.\begin{array}{ll}\text { (2) } y(L)=0: & \cdots \\ \text { (3) } y^{\prime}(L)=0: & \cdots\end{array}\right\} \begin{aligned} & \vec{A}=\vec{A}_{y}=\square \uparrow\end{aligned} \begin{aligned} & y_{c}=y\left(\frac{L}{2}\right)=0\end{aligned}$
Method using moment-area theorem
pt moment-ares theorem: $\theta_{D / C}=A_{C D} \quad \theta_{D / C}=\theta_{D}-\theta_{C}$
Note the the pint $D$ of the beam must be on the right side
of the beam, and $A_{C O}$ is the algebraic make of the
elastio wight diagram between points $C \& D$.
$2^{\text {nd }}$ moment-area theorem: $t_{D / C}=\left(M_{D}\right)_{C O}$
Mote that $t_{D / C}$ is the tangential deviation of point $D$ with repent to the tangent drawn at point $C$.
$t_{0 / C}=$ vertical displacement from point $D$ of the soplectes bean to the tangent drawn at point $C$.
The sigs of $\left(M_{0}\right)_{c o}$ must be consistent s wits the directions of the moment of $\vec{t}_{D / C}$ with respect to $C$
Elastic wright $=\frac{M}{E I}$
$9.50 \quad \frac{M}{E I}$ diagram

drawn by parts

$$
t_{A / B}=\left(M_{A}\right)_{A B}=0
$$

$$
\frac{2 L}{3} \cdot \frac{h}{2} \cdot \frac{A g L}{E I}-\frac{3 L}{4} \cdot \frac{M_{0}}{E I} \cdot \frac{L}{2}=0
$$



$$
\frac{L^{3}}{3} A_{y}-\frac{3 L^{2}}{8} M_{0}=0
$$

$$
A_{y y}=\frac{3}{L^{3}} \cdot \frac{3 L^{2}}{8} M_{0}=\frac{9 M_{0}}{8 L}
$$

Beam deflected by $\vec{M}_{0}$ at $C$

$$
\therefore \vec{A}=\frac{9 M_{0}}{8 L} \uparrow
$$

We may assume that the shape of the deflected beam is sketched as shown. Under such an assumption, note that $\vec{\pi}_{C / B}=\overline{C^{\prime} C} \uparrow$. The moment of $\vec{t}_{C / B}$ with respect to the reference point $B$, where the tangent is drawn, is CLOCKWISE. Therefore, by the second moment-area theorem, we write
$\frac{t_{C / B}}{\text { elastic wright l } M_{C B}}=+2\left(M_{C}=\right.$ mont, about point $C$, of the elastic weight between points $C$ and $B$.
$t_{C / B}=-\frac{2}{3} \cdot \frac{L}{2} \cdot \frac{L}{4} \cdot \frac{L}{2 E I} \cdot \frac{9 M_{0}}{8 L}-\frac{L}{4} \cdot \frac{L}{2} \cdot \frac{L}{2 E I} \cdot \frac{9 M_{0}}{8 L}+\frac{L}{4} \cdot \frac{L}{2} \cdot \frac{M_{0}}{E I}=\frac{M_{0} L^{2}}{128 E I}$
$\vec{t}_{C / B}=\frac{M_{0} L^{2}}{128 E I} \uparrow \quad \vec{y}_{c}={\overrightarrow{C C^{\prime}}}^{\prime}=-\vec{t}_{C / B} \quad \therefore \quad \vec{y}_{C}=\frac{M_{0} L^{2}}{128 E I} \downarrow$

