$\theta_{A}=? \quad y_{A}=$? Flexwnel rigidity $=E I$

$t_{A / B}=$ from the A^{\prime} of the beans
to the tangent drawn at B
$\theta_{B / A}=A_{A B}$ where pt. B is on the night side of pt. A
15 the rem $\theta_{B / A}=\theta_{B}-\theta_{A}=0-\theta_{A}=-\theta_{A}=A_{A B}$

$$
\theta_{A}=-A_{A B}=-\frac{M_{O L}}{E I}
$$

$$
\theta_{4}=\frac{M_{0} L}{E I} 2
$$

$$
\theta_{c}=? \quad y_{c}=?
$$

stopped beam

$$
\begin{gathered}
\frac{P L}{2(1.5 E I)}=\frac{P L}{3 E I} \\
\frac{P L}{1.5 E I}=\frac{2 P L}{3 E I} \\
\frac{P L}{2(1.5 E I)}=\frac{P L}{3 E I} \\
\theta_{C / A}=\theta_{c}-\theta_{A}=\theta_{c}-0=\theta_{c}=A_{A c} \\
\theta_{C}=-\frac{1}{2}\left(\frac{P L}{3 E I}+\frac{3 P}{3 E I}\right)\left(\frac{L}{2}\right)-\frac{L}{4}\left(\frac{P L}{2 E I}\right) \\
=-
\end{gathered}
$$

$$
\vec{t}_{C / A}=+S\left(M_{C}\right)_{A C}
$$

$$
\vec{y}_{c}=-\vec{F}_{c / A} \quad Q_{c}=\square 2
$$

$$
t_{C / A}=\square
$$

$$
\vec{y}_{c}=\varpi \downarrow
$$

$$
\begin{aligned}
& \vec{y}_{A}=-\vec{t}_{A / B} \quad \begin{array}{l}
\vec{t}_{A B}=+5\left(M_{A}\right)_{A B} \\
2^{\text {nd }} \text { there }
\end{array} \\
& t_{A B}=\frac{L}{2} \cdot \frac{M_{B} L}{E I}=\frac{M \cdot L^{2}}{2 E I} \\
& \vec{y}_{A}=\frac{M_{0} L^{2}}{2 E I} \uparrow
\end{aligned}
$$

