

$$
\frac{v L}{2} \cdot \frac{L}{4}=\frac{w L^{2}}{8}
$$

$2^{\text {nd }}$ theoress:

$$
t_{A / B}=\left(M_{A}\right)_{A B}
$$

$$
=\frac{2 L}{3} \cdot \frac{L}{2} \cdot \frac{A_{n} L}{E I}
$$

$$
-\frac{\lambda L}{8} \cdot \frac{1}{3} \cdot \frac{L}{2} \cdot \frac{w L^{2}}{8 E I}
$$

$$
=0 \quad \begin{array}{ll}
& -\frac{1}{8} \cdot \frac{1}{3} \cdot \frac{2}{2} \cdot \\
=A & \vec{A}=\square \uparrow
\end{array}
$$

