3.60

$$
G=11.2 \times 10^{6} \mathrm{pei} \quad k_{t}=4.27 \mathrm{lb} \cdot \mathrm{ft} / \mathrm{red}
$$

$$
d=?
$$

$$
\text { 6t } T=k_{t} \phi=\frac{k_{t}\left(\frac{T L}{J G}\right)}{J G}, \quad J=\frac{\pi}{2} r^{4}
$$

$$
\overline{k_{t}}=\frac{J G}{T L} \cdot K=\frac{J G}{L}
$$

$$
4.27(12)=\frac{\frac{\pi}{2} r^{4}\left(11.2 \times 10^{6}\right)}{6(12)}
$$

$$
\therefore r=0 \quad d=2 r \quad d=\square \mathrm{im} .
$$

$3.66 \tau_{\text {ale }}=50 \mathrm{MPa}$, Power $=15 \mathrm{~kW}$, (a) $f=30 \mathrm{~Hz}, d=$ ?

331

(a) $T_{0}=$ ?
(b) $\phi=$ ?
(a) $\phi=\frac{T L}{J G}$ :
(im) (N)

$$
\begin{aligned}
& \frac{2^{\circ}(\pi)}{180^{\circ}}=\frac{T_{0}(2.5)}{\left.\frac{\pi}{2}[0.05)^{4}-(0.04)^{4}\right]\left(27 \times 10^{9}\right)} \\
& \therefore T_{0}=N \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \pi\left[(0.05)^{2}-(0.04)^{2}\right]=\pi r^{2}, \quad r=\square m \\
& \phi=\frac{\left(T_{0}\right)(2.5) \text { ned }}{\frac{\pi}{2}\left(r^{4}\right)\left(27 \times 10^{8}\right)}=\square \mathrm{rad} \quad \phi=\square \text { degreen }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \mathrm{H}=1 \mathrm{cycle} / \mathrm{s}=2 \pi \mathrm{ral} / \mathrm{h}, \quad \omega=30(2 \pi \mathrm{rad} / \mathrm{h})=60 \pi \mathrm{rad} / \mathrm{h} \\
& T \omega: N \cdot m \cdot \mathrm{red} / \mathrm{h}=N \cdot \mathrm{~m} / \mathrm{h}=\text { Joule } / \mathrm{k}=\text { watt }=\text { power } \\
& T \omega=15 \times 10^{3}, \quad T(60 \pi)=15 \times 10^{3}, \quad T=\square \mathrm{N} \cdot \mathrm{~m} \\
& \tau_{\text {ael }}=\frac{T_{c}}{J_{0}}: \quad 50 \times 10^{6}=\frac{(T)(d / 2)}{\frac{\pi}{2}(d / 2)^{4}}, \quad \therefore d=\square m \quad d=\square \mathrm{km} \\
& \text { Poover }=T \omega \\
& \omega=\text { angular velocity \& the phaft } \\
& T=\text { torgue apelind to the shest }
\end{aligned}
$$

