MEEG 4003 Quiz \#15.m20.093

1. (5) Define the symbols in the acceleration formula:

$$
\mathbf{a}_{B}=\mathbf{a}_{B / A x y z}+\mathbf{a}_{B^{\prime}}+2 \Omega \times \mathbf{v}_{B / A x y z}
$$

2. (10) The dumper pivoted at C is operated by the hydraulic cylinder $A B$. In the position shown, the piston rod is being extended with a velocity of $1.2 \mathrm{ft} / \mathrm{s}$ and an acceleration of $0.231 \mathrm{ft} / \mathrm{s}^{2}$ relative to the cylinder. For this position, determine $\boldsymbol{\omega}_{D}$ and $\boldsymbol{\alpha}_{D}$ of the container D.

1. (5)

OXYZ: fixed reference frame. Axyz: rotating reference frame.
$\mathbf{a}_{B}=$ acceleration of B measured in $O X Y Z$
$\mathbf{a}_{B A x y z}=$ acceleration of B measured in Axyz
$\mathbf{a}_{B^{\prime}}=$ acceleration of B^{\prime} measured in $O X Y Z$, where B 'is a point embedded in $A x y z$ but coincides with point B at the instant under consideration
$\Omega=$ angular velocity of $A x y z$ measured in $O X Y Z$
$\mathbf{v}_{B \mid A x y z}=$ velocity of B measured in $A x y z$
2. (10)

Let $A X Y Z$ be fixed to the ground at C and $A x y z$ be embedded in the cylinder at A with the x axis coinciding with $A B$.

$$
\begin{aligned}
& \boldsymbol{\omega}_{D}=0.25 \mathrm{rad} / \mathrm{s} \circlearrowright \\
& \boldsymbol{\alpha}_{D}=0.01 \mathrm{rad} / \mathrm{s}^{2} \cup
\end{aligned}
$$

