MEEG 4003 Quiz #15.m22.093

1. (5) Define the symbols in the acceleration formula:

$$\mathbf{a}_{B} = \mathbf{a}_{B/Axyz} + \mathbf{a}_{B'} + 2\,\mathbf{\Omega} \times \mathbf{v}_{B/Axyz}$$

2. (1) The Geneva mechanism shown consists of a star wheel *S* and a driving wheel *D*, as shown. It is known that the driving wheel *D* rotates with a constant angular velocity $\omega_D = 3$ rad/s \bigcirc . For the instant when $\theta = 60^\circ$, determine the angular velocity ω_S and the velocity $\mathbf{v}_{B/S}$ of the engaging pin *B* relative to the wheel *S*.

- **1.** \bigcirc *OXYZ*: fixed reference frame. *Axyz*: rotating reference frame.
- \mathbf{a}_{B} = acceleration of *B* measured in *OXYZ*

 $\mathbf{a}_{B/Axyz}$ = acceleration of *B* measured in *Axyz*

- $\mathbf{a}_{B'}$ = acceleration of *B* 'measured in *OXYZ*, where *B* 'is a point embedded in *Axyz* but coincides with point *B* at the instant under consideration
- Ω = angular velocity of Axyz measured in OXYZ
- $\mathbf{v}_{B/Axyz}$ = velocity of *B* measured in *Axyz*

2. ⁽¹⁾ Let AXYZ be the fixed reference frame and Axyz be embedded in the star wheel with the x axis directed along the line AB.

 $\omega_s = 1.225 \text{ rad/s}$ **U** $v_{B/S} = 16.17 \text{ in./s}$ **N** 132.4°