Acceleration of a particle in polar coordinates

position vector of particle P is $\vec{r}=r \vec{e}_{r} \quad$ v.
$\vec{e}_{r} \& \vec{e}_{\theta}$ are unit vectors, but not constant vectors.

$\Delta \vec{e}_{\theta}=1 . \Delta \theta\left(-\vec{e}_{r}\right)=-\Delta \theta \vec{e}_{r}$

$$
\begin{aligned}
& \frac{d \vec{e}_{r}}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{e}_{r}}{\Delta t}=\lim _{\Delta k \rightarrow 0} \frac{\Delta \theta}{\Delta t} \vec{e}_{\theta}=\frac{d \theta}{d t} \vec{e}_{\theta}=\dot{\theta} \vec{e}_{\theta} \\
& \dot{\vec{e}}_{r}=\dot{\theta} \vec{e}_{\theta} \quad \dot{\vec{e}}_{\theta}=-\dot{\theta}_{\theta} \vec{e}_{r} v_{0} \cdot \cdots I \\
& \frac{d \vec{e}_{\theta}}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{e}_{0}}{\Delta t}=-\lim _{\Delta k \rightarrow 0} \frac{\Delta \theta}{\Delta t} \vec{e}_{r}=-\frac{d \theta}{d t} \vec{e}_{r}=-\dot{\theta} \vec{e}_{r}
\end{aligned}
$$

Velocity $=$ time rete of change of position vector.

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t}=\dot{\vec{r}}, \quad \vec{r}=r \vec{e}_{r}, \quad \vec{v}=\vec{r} \\
& \vec{v}=\dot{r} \vec{e}_{r}+r \dot{\vec{e}}_{r}=\dot{r} \vec{e}_{r}+r\left(\dot{\theta} \vec{e}_{\theta}\right) \\
& \vec{v}=\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta} \quad \begin{array}{l}
v_{r}=\dot{r} \\
v_{\theta}=r \dot{\theta}
\end{array}
\end{aligned}
$$

Acceleration = time ste of change of velocity

$$
\begin{aligned}
\vec{a} & =\dot{\vec{v}}=\ddot{r} \vec{e}_{r}+\dot{r} \overrightarrow{\vec{e}}_{r}+\dot{r} \dot{\theta} \vec{e}_{\theta}+r \ddot{\theta} \vec{\theta}_{\theta}+r \dot{\theta} \dot{\vec{e}}_{\theta} \\
& =\ddot{r} \vec{e}_{r}+\dot{r}\left(\dot{\theta} \vec{e}_{\theta}\right)+\dot{r} \dot{\theta} \vec{e}_{\theta}+\dot{r} \ddot{\theta} \vec{e}_{\theta}+r \dot{\theta}\left(-\dot{\theta} \vec{e}_{r}\right) \\
a_{r} & \left.=\ddot{r}-r \dot{\theta}^{2} \quad\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \vec{e}_{\theta}\right)
\end{aligned}
$$

Central-force motion (Tree flight op Qpacereret)
(method of fra ce a acolertion)

Trow-sody diagram
Efective-force diagram (nee Xaccelation)

$$
\begin{aligned}
& +\lambda \Sigma V_{1} \quad-F=m\left(\ddot{r}-r \dot{\theta}^{2}\right) \\
& +\left(\Sigma V_{\theta}: \quad \theta=m(r \ddot{\theta}+2 \dot{r} \dot{\theta})\right. \\
& F=\frac{G M m}{r^{2}}=G M m r^{-2}
\end{aligned}
$$

