Tuesday, $10 / 13 / 09\}$ a quig, $\& a$ anid term exam will Thuraday, 10/15109 \} be given to the clan on prosetwordaye. There will be a tomewoik collection mext Tues day.
Example $15.12 \quad \vec{\alpha}_{P D}=? \quad \vec{\alpha}_{D E}=$?

The v.c. \& $A B$ is at A.

$$
\text { " * "DE" } E
$$

$$
\because \pi=B O . \quad C
$$

$$
\vec{\omega}_{A B}=10 \mathrm{rad} / \mathrm{k}
$$

$$
\vec{\alpha}_{A B}=12 \mathrm{rad} / \mathrm{s}^{2} \mathrm{~J}
$$

$v_{B}=3(10)=6 \omega_{B D}, \omega_{B D}=5$
$v_{D}=5(5)=10 \omega_{D E}, \omega_{D E}=2.5$

$$
\vec{a}_{B}=\vec{a}_{B / A}+\vec{a}_{A}=\vec{a}_{B / A}=\vec{a}_{B / D}+\vec{a}_{D D}=\vec{a}_{B / D}+\left(\vec{a}_{B / e}+\vec{a}_{B E}\right)=\vec{a}_{B / D}+\vec{a}_{D / E}
$$

$\vec{a}_{B / A}=\vec{a}_{B / D}+\vec{a}_{D / E}$ Linkege eq. for accelerations
(Relatiri accelenations must be dua to notation.)

$\Sigma V_{C}: \quad 3(12)=\frac{4}{5}(5)(5)^{2}+\frac{3}{5}\left(5 \alpha_{B D}\right)+\frac{4}{5}(10)(2.5)^{2}+\frac{3}{5}\left(10 \alpha_{D E}\right)$
$\Sigma V_{y:} \quad 3(10)^{2}=-\frac{3}{5}(5)(5)^{2}+\frac{4}{5}\left(5 \alpha_{D D}\right)+\frac{3}{5}(10)(25)^{2}-\frac{4}{5}\left(10 \alpha_{D E}\right)$

$$
\therefore \alpha_{B D}=\square \quad \alpha_{D E}=\square \quad \overrightarrow{\alpha_{B D}}=23.2 \mathrm{Rad} / 22 \quad \vec{\alpha}_{D E}=30.6 \mathrm{red} / 22
$$

Conatraint condition:

$$
\begin{align*}
& \overrightarrow{A B}+\overrightarrow{B D}+\overrightarrow{D O}=\overrightarrow{A O} \\
& 2\left(-\cos \theta_{1} \vec{i}+\sin \theta_{1} \vec{j}\right)+4\left(\cos \theta_{2} \vec{i}+\sin \theta_{2} \vec{j}\right) \\
& +6\left(\cos \theta_{3} \vec{i}-\sin \theta_{3} \vec{j}\right)=8 \vec{i} \\
& \vec{i}:-2 \cos \theta_{1}+4 \cos \theta_{2}+6 \cos \theta_{3}=8 \\
& \vec{j}: 2 \sin \theta_{1}+4 \sin \theta_{2}-6 \sin \theta_{3}=0 \cdots \cdots \text { (1) } \\
& \sin \theta=\theta-\frac{\theta^{3}}{3!}+\cdots \approx \theta \\
& \cos \theta=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots \approx 1-\frac{\theta^{2}}{2} \\
& -2\left(1-\frac{\theta_{1}^{2}}{2}\right)+4\left(1-\frac{\theta_{2}^{2}}{2}\right)+6\left(1-\frac{\theta_{3}^{2}}{2}\right)=8 \\
& (-2+4+6)+\left(\theta_{1}^{2}-2 \theta_{2}^{2}-3 \theta_{3}^{2}\right)=8 \\
& \theta_{1}^{2}-2 \theta_{2}^{2}-3 \theta_{3}^{2}=0 \\
& 2 \theta_{1}+4 \theta_{2}-6 \theta_{3}=0 \quad \theta_{1}+2 \theta_{2}-3 \theta_{3}=0 \cdot\left(2^{\prime}\right) \\
& \dot{\theta}_{2}=\frac{1}{5}(-1 \pm \sqrt{6}) \dot{\theta}_{1} \quad \dot{\theta}_{3}=\square \dot{\theta}_{1} \\
& 2 \theta_{2}=3 \theta_{3}-\theta_{1} \quad \theta_{2}=1.5 \theta_{3}-0.5 \theta_{1} \\
& \theta_{1}^{2}-2\left(1.5 \theta_{3}-0.5 \theta_{1}\right)^{2}-3 \theta_{3}^{2}=0 \\
& \begin{array}{l}
a \theta_{3}^{2}+b \theta_{3}+c=0, \quad a=\square, b=\square, c=\square \\
\text { v.v... G.P. }
\end{array} \\
& \text { (see P. } 691 \text {) }
\end{align*}
$$

