
$\vec{\omega}_{o v}=$?
$\vec{v}_{B / 0 D}=$?
Let $0 x y z$ bepertedted is the rood OD. Then

$$
\vec{\Omega}=\vec{\omega}_{O D}=\omega_{O D} \vec{k}
$$

Pis B belonge to $\operatorname{rad} C B$. and slideresis the slot of

$$
\vec{v}_{B}=\vec{v}_{B / C}+\vec{v}_{C}=\vec{v}_{B / C}=\vec{\omega}_{B C} \times \vec{r}_{B / C}
$$

tho D.

$$
\vec{\omega}_{B C}=-4.25 \vec{K} \quad \vec{r}_{B / C}=-15 \vec{I}+8 \vec{J}
$$

$$
\begin{aligned}
& \overrightarrow{w_{B C}}=-4.2 \vec{N} \times(-15 \vec{I}+8 \vec{J})=34 \vec{I}+63.75 \vec{J} \\
& \overrightarrow{w_{B}}=-4.25 \vec{n} \times \vec{n}+\vec{n}
\end{aligned}
$$

$$
\vec{v}_{B}=\vec{v}_{B / 0 \times / 3}+\vec{\Omega} \times \vec{r}_{B / Q}+\vec{v}_{Q} \quad \overrightarrow{v_{B}}=\vec{v}_{B / o x / 33}+\vec{\Omega} \times \vec{r}_{B / 0}
$$

$$
\vec{v}_{D}=v_{B / O D} \vec{i}+\omega_{0 D} \vec{k} \times(10 \vec{i})=v_{B / D D} \vec{i}+10 \omega_{D D} \vec{j}
$$

$$
=v_{B / O D}\left(\frac{1}{5}\right)(3 \vec{I}+4 \vec{J})+r_{0}^{2} \omega_{O D}\left(\frac{1}{5}\right)(-4 \vec{I}+3 \vec{J})
$$

$$
\overrightarrow{v_{B}}=\left(\frac{3}{5} v_{B / 00}-8 \omega_{00}\right) \vec{I}+\left(\frac{4}{5} v_{B / 00}+6 \omega_{00}\right) \vec{J}
$$

$$
\text { 고 } \quad \frac{3}{5} v_{B / O D}-8 \omega_{O D}=34
$$

\vec{J}

$$
\begin{aligned}
& v_{B / 0 D}=71.4 \quad \omega_{O D}=1.105 \\
& \vec{\omega}_{O D}=1.105 \mathrm{rad} / \mathrm{RS} \quad \vec{v}_{B / O D}=71.4 \mathrm{~m} / / \mathrm{R} / 1_{3}^{1}
\end{aligned}
$$

There will be a quiz on next Thursday, $10 / 29109$. a homework collection will be made on $10 / 29109$ also. Oceseleration of a particle B using a notating reference france.

$\vec{v}_{B}=$ tine rate of change of the position vector \vec{r}_{B}.
$\vec{a}_{B}=$ time tate of change of the velocity vector \vec{v}_{B}.

$$
\begin{aligned}
& \vec{a}_{B}=\dot{v}_{B}=\left(\dot{\vec{v}}_{B / A \times y 3}\right)_{0 X Y Z}+\dot{\bar{\Omega}} \times \vec{r}_{B A}+\vec{\Omega} \times \dot{\vec{r}}_{B / A}+\dot{\dot{v}_{A}}
\end{aligned}
$$

$$
\begin{aligned}
& =\vec{a}_{B / A x y_{3}}+\vec{\Omega} \times \vec{v}_{B / A x_{3}}+\vec{\Omega} \times \vec{r}_{B A}+\vec{\Omega} \times\left[\vec{v}_{B / A \tan 3}+\vec{\Omega} \times \vec{r}_{B A A}\right]+\vec{a}_{A} \\
& \left.\vec{a}_{B}=\vec{a}_{B / A \times y_{3}}+\dot{\Omega} \times \vec{\Gamma}_{B / A}+\vec{\Omega} \times\left(\vec{\Omega} \times \vec{T}_{B A}\right)+2 \vec{\Omega} \times \vec{N}_{B / A \times y_{3}}+\vec{a}_{A}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{v}_{B}=\dot{\vec{r}}_{B}=\dot{\vec{r}}_{B / A}+\dot{\vec{r}}_{A}=\left(\dot{\vec{r}}_{B}, A\right)_{A, w_{3}}+\vec{\Omega} \times \vec{r}_{B / A}+\vec{v}_{A} \\
& \overrightarrow{v_{B}}=\vec{v}_{B / A x_{3} 3}+\vec{\Omega} \times \vec{r}_{B A}+\vec{v}_{A} \text { T } \vec{v}_{B / A x y z} \\
& \vec{v}_{B^{\prime}}=\vec{v}_{B^{\prime} / A \times y_{B}}+\vec{\Omega} \times \vec{r}_{B_{/ A}}+\vec{v}_{A} \quad \text { of } \quad \vec{v}_{B^{\prime} \text { of oreplalh comenides with }}=\vec{\Omega} \times \vec{r}_{B / A}+\vec{n}_{A} \\
& \vec{v}_{B}=\vec{v}_{B / A \times 93}+\vec{v}_{B}
\end{aligned}
$$

