

$$
\begin{aligned}
& \vec{\alpha}_{O D}=?, \vec{a}_{B / O D}=? \\
& \vec{\alpha}_{B C}=0, \quad \vec{\omega}_{B C}=-4.25 \vec{k} \\
& \left.\vec{a}_{B}=i x(4.25)^{2}\right)\left(\frac{1}{n}\right)(15 \vec{I}-8 \vec{J}) \\
& \frac{\vec{a}_{B}=270.94 \vec{I}-144.5 \overrightarrow{\mathrm{~J}}}{\vec{a}_{B}=\vec{a}_{B / 043 \mathrm{~J}}+\dot{\bar{\Omega}} \times \vec{F}_{B / 0}} \\
& +\vec{\Omega} \times\left(\vec{\Omega} \times \vec{r}_{B / 0}\right) \\
& +2 \vec{\Omega} \times \overrightarrow{v_{B} / \alpha_{\text {g } 23}}+\vec{a}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a}_{B}= a_{B / O D} \vec{i}+\alpha_{O D} \vec{k} \times 10 \vec{i}+1.105 \vec{k} \times(1.105 \vec{k} \times 10 \vec{i}) \\
&+2(1.105 \vec{k}) \times 71.4 \vec{i}+\overrightarrow{0} \\
& \vec{a}_{B}=\left(a_{B / O D}-12.2\right) \vec{i}+\left(10 \alpha_{O D}+157.79\right) \vec{j} \\
& \vec{i}= \frac{1}{5}(3 \vec{I}+4 \vec{J}) \quad \vec{j}=\frac{1}{5}(-4 \vec{I}+3 \vec{J}) \\
& \vec{a}_{B}=\left(0.6 a_{B / O D}-8 \alpha_{O D}-133.56\right) \vec{I}+\left(0.8 a_{B / 0 D}+6 \alpha_{O D}+84.91\right) \vec{J} \\
& {\left[\begin{array}{cc}
0.6 & -8 \\
0.8 & 6
\end{array}\right]\left[\begin{array}{l}
a_{B / O D} \\
\alpha_{O D}
\end{array}\right]=\left[\begin{array}{l}
404.5 \\
-229.41
\end{array}\right] \quad \begin{array}{l}
a_{B / D D}=59.172 \\
\alpha_{O D}=-461246
\end{array} } \\
& \vec{\alpha}_{O D}=46.1 \mathrm{red} / \mathrm{s}^{2} 2 \quad \vec{a}_{B / O D}=59.2 \mathrm{~m} / / \mathrm{R}^{2} / \beta_{3}
\end{aligned}
$$

Use of rotating reference breme

poition vector: $\vec{r}_{B}=\vec{r}_{B / A}+\vec{r}_{A}$

velority: $\vec{v}_{B}=\vec{v}_{B / A P B B}+\vec{\Omega} \times \vec{r}_{B / A}+\vec{v}_{A}$

$$
\begin{aligned}
& \vec{v}_{B}=\vec{v}_{B / A \times y_{3}}+\vec{v}_{B^{\prime}} \\
& \vec{v}_{B^{\prime}}=\vec{\Omega} \times \vec{r}_{B / A}+\vec{v}_{A}
\end{aligned}
$$

acceleration: $\vec{a}_{B}=\vec{a}_{B / A d y s}$
$\begin{aligned}+\dot{\Omega} \times \vec{r}_{B / A}+\vec{\Omega} \times\left(\vec{\Omega} \times \vec{r}_{B A A}\right) & +2 \vec{J} \times \vec{r}_{/ / A x y s} \\ & +\vec{a}_{A}\end{aligned}$

$$
\frac{\vec{a}_{B}=\vec{a}_{B / A \times y_{3}}+\vec{a}_{B^{\prime}}+2 \vec{\Omega} \times \vec{v}_{B / A x y z}}{\vec{a}_{B}=\dot{\vec{\Omega}} \times \vec{r}_{B / A}+\vec{\Omega} \times\left(\vec{\Omega} \times \vec{r}_{B / A}\right)+\vec{a}_{A}}
$$

$2 \vec{\Omega} \times \vec{v}_{B / A X y_{3}}$: Corialis acceleration

$$
\begin{aligned}
2 \vec{\Omega} \times \vec{v}_{B / A x / 3} & =\vec{a}_{B}-\vec{a}_{B^{\prime}}-\vec{a}_{B / A z y s} \\
& =\vec{a}_{B / B^{\prime}}-\vec{a}_{B / A x y s}
\end{aligned}
$$

 $\vec{\omega}_{B C}=2.6 \mathrm{rad} / 2 \mathrm{~J}, \alpha_{B C}$
$\vec{\alpha}_{A D}=? \quad \vec{a}_{B / A D}=?$ Let $A x y s$ be embedsed in menler $A D$ Lit B^{\prime} 'lelongig $t A D$ concidere wite B. $\vec{v}_{B}=\vec{v}_{B / A 0 y s}+\vec{v}_{B^{\prime}}$

$$
\begin{aligned}
& \vec{a}_{B}=\vec{a}_{B / A X V 8}+\vec{a}_{B^{\prime}}+2 \vec{\Omega} \times \vec{v}_{B / A X 43}
\end{aligned}
$$

$$
\begin{aligned}
& a_{B / A D}=\square, \alpha_{A D}=\square \quad \vec{a}_{A D}=\square \quad \vec{a}_{B / A D}=\square
\end{aligned}
$$

