$$
\begin{aligned}
& \vec{v}_{B}=\vec{v}_{B / A x H 3}+\vec{v}_{B^{\prime}} \quad \vec{v}_{B^{\prime}}=\vec{\Omega} \times \vec{r}_{B / A}+\vec{v}_{A} \\
& \vec{a}_{B}=\vec{a}_{B / A \times y /}+\vec{a}_{B^{\prime}}+2 \vec{\Omega} \times \vec{v}_{B / A x H B} \\
& \vec{a}_{B^{\prime}}=\dot{\Omega} \times \vec{B}_{B / A}+\vec{\Omega} \times\left(\vec{\Omega} \times \vec{B}_{B / A}\right)+\vec{a}_{A}
\end{aligned}
$$

Addition theorem for angular acceleration.

$$
\begin{aligned}
& \vec{\omega}_{A B B}=-\vec{\omega}_{B / A} \\
& \vec{\omega}_{A}=\vec{\omega}_{A / B}+\vec{\omega}_{B / C}+\vec{\omega}_{C} \\
& \vec{\omega}_{A / B}=\left(\dot{\omega}_{A / B}\right)_{B x^{\prime} g^{\prime} z^{\prime}}
\end{aligned}
$$

anger acceleration of A is B

$$
z^{\prime \prime} \quad \vec{\alpha}_{A / c}=\left(\dot{\bar{\omega}}_{A C}\right)_{c x^{2} y y^{\prime} z^{\prime \prime} \text { angler aral. of } A \operatorname{inc} C}
$$

$\underbrace{\left(\dot{\vec{W}}_{A V C}\right.})_{B X^{\prime} y^{\prime} s^{\prime}}$

$$
\vec{\alpha}_{C / B}=\left(\dot{\bar{\omega}}_{C / \theta}\right)_{B x^{\prime} y \xi} \quad \because \cdot C \text { in } B
$$

not an angular acceleration of A in C or B.
having no simple physical interpretation.

$$
\begin{aligned}
& \left.\dot{\dot{Q}}=(\dot{Q})_{A \times y z}+\vec{\Omega} \times \vec{Q}\right), \text { where } \vec{\Omega}=\vec{\omega}_{A / 0}=\left(\overrightarrow{\omega_{A}}\right)_{0 \times Y Z} \\
& \begin{aligned}
\left(\dot{\omega}_{A C C}\right)_{B K^{\prime \prime} y^{\prime} /} & =\left(\dot{\omega}_{A / C}\right)_{C Z^{\prime} y^{\prime} z^{\prime \prime}} \\
& +\vec{\omega}_{C / B} \times \vec{\omega}_{A / C}+\vec{\omega}_{C / B} \times \vec{\omega}_{A / C}
\end{aligned}
\end{aligned}
$$

add.theremfor $\vec{\omega}, \quad \vec{\omega}_{A / B}=\vec{\omega}_{A / C}+\vec{\omega}_{C / B}$

$$
\begin{gathered}
\left(\dot{\vec{\omega}}_{A / B}\right)_{B x^{\prime} y^{\prime} z^{\prime}}=\left(\dot{\vec{\omega}}_{A / C}\right)_{B x^{\prime} g^{\prime} \gamma}+\left(\dot{\omega}_{C / B}\right)_{B x^{\prime} g^{\prime} z} \\
\vec{\alpha}_{A / B}=\vec{\omega}_{C / B} \times \vec{\omega}_{A / C}+\vec{\alpha}_{C / B} \\
\vec{\alpha}_{A / B}=\vec{\alpha}_{A / C}+\vec{\alpha}_{C / B}+\vec{\omega}_{C / B} \times \vec{\omega}_{A / C}
\end{gathered}
$$

adaption the rem for angular acceleration

$$
\begin{aligned}
\vec{\alpha}_{A / 0} & =\vec{\alpha}_{A / B}+\vec{\alpha}_{B / 0}+\vec{\omega}_{B / 0} \times \vec{\omega}_{A / B} \\
& =\vec{\alpha}_{A / B}+\left(\vec{\alpha}_{B / C}+\vec{\alpha}_{c / 0}+\vec{\omega}_{C / 0} \times \vec{\omega}_{B / C}\right)+\vec{\omega}_{B / 0} \times \vec{\omega}_{A / B} \\
& =\vec{\alpha}_{A / B}+\vec{\alpha}_{B / C}+\vec{\alpha}_{C / 0}+\vec{\omega}_{B / 0} \times \vec{\omega}_{A / B}+\vec{\omega}_{C / 0} \times \vec{\omega}_{B / 0} \\
\vec{\alpha}_{A} & =\vec{\alpha}_{A / B}+\vec{\alpha}_{B / C}+\vec{\alpha}_{C}+\vec{\omega}_{B} \times \vec{\omega}_{A / B}+\vec{\omega}_{c} \times \vec{\omega}_{B / 0}
\end{aligned}
$$

Example 19.3 y

$$
v_{E R}=10 \mathrm{dt} / \mathrm{k} \quad \vec{\omega}_{R}=3 \vec{I} \mathrm{Red} / \mathrm{k}
$$

$$
\vec{\alpha}_{R}=4 \vec{I} \mathrm{rad} / \mathrm{R}^{2} \quad \vec{v}_{B}=? \quad \vec{a}_{B}=\text { ? }
$$

Let Acyz be embedded in the bent rod R as shown.

$$
\vec{\Omega}=\vec{\omega}_{R}=3 \vec{I} \mathrm{red} / \mathrm{R}
$$

$$
x, x \quad \dot{\vec{\Omega}}=4 \vec{I} \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
\vec{v}_{B} & =\vec{v}_{B / A x y 3}+\vec{v}_{B^{\prime}} \\
& =\frac{10}{5}(4 \vec{I}-3 \vec{J})+4(3) \vec{k} \\
\vec{v}_{B} & =8 \vec{I}-6 \vec{J}+12 \vec{k}+\frac{B}{k} / k
\end{aligned}
$$

addition theorem for angular accelerations

$$
\begin{aligned}
& \vec{a}_{B}=\vec{a}_{B / A x y z}+\vec{a}_{B^{\prime}}+2 \vec{\Omega} \times{\overrightarrow{\sigma_{B}}}+x_{y z} \\
& =\frac{(10)^{2}}{5}\left(\frac{1}{5}\right)(-3 \vec{I}-4 \vec{J})+\left[4(3)^{2}(-\vec{J})+4(4) \vec{k}+\overrightarrow{0}\right] \\
& +2(3 \vec{I}) \times \frac{10}{5}(4 \vec{x}-3 \vec{J}) \\
& =-12 \vec{I}-52 \vec{J}-20 \vec{k} \quad \vec{a}_{B}=-12 \vec{I}-52 \vec{J}-2 \overrightarrow{\mathrm{~K}} \mathrm{ft} / \mathrm{R}^{2} \\
& \vec{\alpha}_{A}=\vec{\alpha}_{A / B}+\vec{\alpha}_{B / C}+\vec{\alpha}_{C / D}+\vec{\alpha}_{D / G}+\vec{\alpha}_{E} \\
& +\vec{\omega}_{B} \times \vec{\omega}_{A / B}+\vec{\omega}_{C} \times \vec{\omega}_{B / C}+\vec{\omega}_{D} \times \vec{\omega}_{C / D}+\vec{\omega}_{E} \times \vec{\omega}_{D / E}
\end{aligned}
$$

