Mase momente of inertie (See pag 858)

$$
I_{x z}=\int r_{z}^{2} d m=\int\left(y^{2} 7 z^{2}\right) d m
$$

$$
I_{m}=\int \xi_{y}^{2} d m=\int\left(z^{2}+x^{2}\right) d m
$$

$$
I_{z z}=\int r_{z}^{2} d m=\int\left(x^{2}+y^{2}\right) d m
$$

$$
I_{x y}=\int x y d m \quad I_{y z}=\int y_{z} d m \quad I_{z x}=\int z x d m
$$

$$
I_{y p}=I_{z x} \quad I_{y z}=I_{y p} \quad I_{z x}=I_{x z}
$$

$$
\begin{aligned}
& I_{0 A}=\int p^{2} d m \quad p=r \sin \theta=|r \sin \theta=|\vec{\lambda} \times \vec{r}| \\
& p^{2}=(\vec{\lambda} \times \vec{r}) \cdot(\vec{\lambda} \times \vec{r}) \quad \vec{\lambda} \times \vec{r}=\left|\begin{array}{lll}
\vec{\lambda} & \vec{J} & \vec{k} \\
\vec{x} & \overrightarrow{y_{y}^{2}} & \frac{\lambda}{z}
\end{array}\right|
\end{aligned}
$$

$$
\vec{\lambda} \times \vec{r}=\left(z \lambda_{y}-y \lambda_{3}\right) \vec{j}+\left(x \lambda_{y}-z \lambda_{x}\right) \vec{j}+\left(y \lambda_{x}-x \lambda_{y}\right) \vec{k}
$$

$$
p^{2}=\left(3 \lambda_{y}-y \lambda_{3}\right)^{2}+\left(x \lambda_{3}-3 \lambda_{x}\right)^{2}+\left(y \lambda_{x}-x \lambda_{y}\right)^{2}
$$

$$
=\left(3^{2} \lambda_{1}^{2}-23 y \lambda_{2} \lambda_{3}+y^{2} \lambda_{3}^{2}\right)+\left(x^{2} \lambda_{3}^{2}-2 x_{3} \lambda_{3} \lambda_{1}+3^{2} \lambda_{3}^{2}\right)
$$

$$
+\left(y^{2} \lambda_{x}^{2}-2 y x \lambda x \lambda y+x^{2} \lambda_{y}^{2}\right)
$$

$$
I_{0 A}=\int \lambda_{x}^{2}\left(y^{2}+3^{2}\right) d m+\int \lambda_{1}^{2}\left(z^{2}+x^{2}\right) d m+\int \lambda_{3}^{2}\left(x^{2}+y^{2}\right) d m
$$

$$
-2 \int \lambda_{x} \lambda_{y} x y d m-2 \int \lambda_{y} \lambda_{3} y z d n-2 \int \lambda_{3} \lambda_{x} 3 x d m
$$

$$
I_{0 A}=I_{x x} \lambda_{x}^{2}+I_{m \lambda} \lambda_{g}^{2}+I_{32} \lambda_{3}^{2}-2 I_{x_{y}} \lambda_{x} \lambda_{y}-2 I_{y 3} \lambda_{y} \lambda_{3}-2 I_{3 x} \lambda_{3} \lambda_{x}
$$

Parallel-axis theorem
staty estamper 19.7 Rotatios of coordinate ases

$$
\mathbb{I}^{\prime}=\mathbb{R} \mathbb{I} \mathbb{R}^{\top}
$$

Momentum of a rigid body

Let $G x$ Mz be enbeded tio the ruged body atits mane center Q.
$\vec{r}=\vec{r}+\vec{r}^{\prime} \quad \vec{\sigma}=\dot{\vec{r}}=\dot{\vec{r}}+\dot{\vec{r}}$
$\vec{v}=\vec{r}+\left(\frac{d \vec{r}}{d)_{\text {a }}}\right)_{\text {aness }}+\vec{\Omega} \times \vec{r}^{\prime}$
Let $\bar{\omega}$ be the argelen veloits oftt body.
Then, $\vec{\Omega}=\vec{\omega}=\omega_{x} \overrightarrow{\vec{p}}+\omega_{2} \vec{j}+\omega_{3} \vec{k}$
$\vec{v}=\vec{v}+\vec{o}+\vec{\omega} \times \vec{r} \quad \vec{v}=\vec{v}+\vec{\omega} \times \vec{r}$.
Let I be the linear monentum rector of the body, and
\vec{H}_{Q} be the angelar momentum vecta of the bady deat G.
$\vec{L}=\int \vec{v} d m=\int(\vec{v}+\vec{\omega} \times \vec{r}) d m=\int \vec{v} d m+\int \vec{\omega} \times \vec{r} \cdot d m$
$=\vec{v} \int 2 m+\vec{\omega} \times \int \overrightarrow{r^{\prime}} d m=\vec{v} m+\vec{\omega} \times\left(\operatorname{lo} \overrightarrow{r^{\prime}}{ }^{\circ}=m \vec{v}\right.$
$\vec{L}=m \vec{v} \quad \vec{r} \quad \vec{r}^{\prime}=$ vectr drasin fion G ot G
$\vec{H}_{G}=\int \vec{r}^{\prime} \times \vec{v} d m=\int \vec{r} \times(\vec{v}+\vec{a} \times \vec{r}) d m$
$=\left(\int \vec{r} \cdot\left(m_{0}\right) \times \vec{v}+\int \vec{r}^{-} \times\left(\vec{a} \times \vec{r}^{\prime}\right) d m\right.$
$\left.=\vec{r}^{\prime} \dot{m}^{0}+\int \overrightarrow{r^{\prime}} \times(\vec{a} \times \vec{r}) \mathrm{r}\right) \mathrm{dm}=\int \vec{r}^{\prime} \times\left(\vec{a} \times \vec{r}^{\prime}\right) d m$ $\vec{H}_{G}=\int \vec{r}^{\prime} \times\left(\vec{\omega} \times \vec{r}^{\prime}\right) d_{m}$

