Kinetic energy ob a rigid body

$$
\begin{aligned}
\vec{v} & =\vec{v}+\vec{\omega} \times \vec{r} \quad \quad \quad T=\frac{1}{2} \int v^{2} d m \\
v^{2}= & \vec{v} \cdot \vec{v}=\left(\vec{v}+\vec{\omega} \times \vec{r}^{\prime}\right) \cdot\left(\vec{v}+\vec{\omega} \times \vec{r}^{\prime}\right) \\
& =\vec{v}^{2}+\vec{v} \cdot(\vec{\omega} \times \vec{r})+(\vec{\omega} \times \vec{r}) \cdot \vec{v} \\
& +(\vec{\omega} \times \vec{r}) \cdot(\vec{\omega} \times \vec{r})
\end{aligned}
$$

Vote that $\vec{A} \cdot \vec{P} \times \vec{Q}=\vec{A} \times \vec{P} \cdot \vec{Q}$

$$
\begin{aligned}
& v^{2}=\vec{v}^{2}+2 \vec{v} \cdot(\vec{\omega} \times \vec{r})+\vec{\omega} \times \vec{r} \cdot\left(\vec{\omega} \times \vec{r}^{\prime}\right) \\
& T=\frac{1}{2} \int \vec{v}^{2} d m+\vec{v} \cdot \vec{\omega} \times \int \vec{r} \cdot \overrightarrow{r^{0}}+\frac{1}{2} \vec{\omega} \cdot \int \overrightarrow{r^{\prime}} \times(\vec{\omega} \times \vec{r}) d m \\
& =\frac{1}{2} \vec{v}^{2} m+\vec{v} \cdot \vec{\omega} \times \overrightarrow{0}+\frac{1}{2} \vec{\omega} \cdot \vec{H}_{G}=\frac{1}{2} m \vec{v}^{2}+\frac{1}{2} \vec{\omega} \cdot \vec{H}_{G} \\
& \vec{L}=m \vec{v} \quad \frac{1}{2} m \vec{v}^{2}=\frac{1}{2} \vec{v} \cdot m \vec{v}=\frac{1}{2} \vec{v} \cdot \vec{L}
\end{aligned}
$$

Therefore, $\quad T=\frac{1}{2} \vec{v} \cdot \vec{L}+\frac{1}{2} \vec{\omega} \cdot \vec{H}_{G}$
On plane motion: $T=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \bar{I} \omega^{2}$

$$
\begin{aligned}
T=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} & \left(\bar{I}_{x x} \omega_{x}^{2}+\bar{F}_{y y} \omega_{y y}^{2}+\bar{I}_{z z} \omega_{z}^{2}\right. \\
& \left.-2 \bar{I}_{x y} \omega_{x} \omega_{y}-2 \overline{\bar{I}_{z z}} \omega_{y} \omega_{z}-2 \overline{\bar{I}_{z x}} \omega_{z} \omega_{z}\right)
\end{aligned}
$$

$T=\frac{1}{2} I_{O A} \omega^{2}$ whoa the body cater about fixed axis $O A$.
Principle of work \& kinetic every: $T_{1}+U_{H 2}=T_{2}$
(See Example 19.10 for illustration.)
Equations of motion for a reid body

$$
\begin{aligned}
& \sum \vec{F}=\dot{\vec{L}} \\
& \sum \vec{M}_{G}=\dot{\vec{H}}_{G} \\
& \sum \vec{M}_{0}=\dot{\vec{H}}_{0}
\end{aligned}
$$

Euler s equations of motion:

$$
\begin{aligned}
& \sum M_{x}=I_{x} \dot{\omega}_{x}-\left(I_{y}-I_{z}\right) \omega_{y} \omega_{z} \\
& \sum M_{y}=I_{y} \dot{\omega}_{y}-\left(I_{z}-I_{x}\right) \omega_{z} \omega_{z} \\
& \sum M_{z}=I_{z} \dot{\omega}_{z}-\left(I_{x}-I_{y}\right) \omega_{x}\left(\omega_{y}\right.
\end{aligned}
$$

