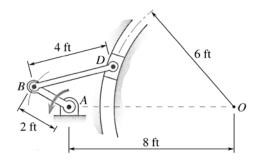


(Closed books & closed notes)

MEEG 4003


Quiz #15.m15.093

1. ② Describe Chasles' theorem.

2. (8) In the position shown, the crank *AB* of the 4-bar linkage rotates with $\omega_{AB} = 8$ rad/s \heartsuit and $\alpha_{AB} = 6$ rad/s² \heartsuit . Determine the angular velocity ω_{BD} and angular acceleration α_{BD} of the link *BD* in this position.

Midterm Exam (Part A)

1. (30%) A linkage is shown, where the slider *D* moves along a smooth circular groove of radius 6 ft as indicated. It is known that the crank *AB* rotates with a constant angular velocity $\omega_{AB} = 1$ rad/s \heartsuit . Using the *parametric method*, determine the **possible values** of the angular velocity ω_{BD} of the link *BD* and the velocity \mathbf{v}_D of the slider *D* when *AB* and *BD* become collinear with the line *AO*.

(Part B of the Midterm Exam to be given in the next meeting)