Assignments for MEEG 4003 Intermediate Dynamics

Instru	ictor:	Ing-Char	ng Jong,	Ph.D., P.E	/•		Office: M	IEEG 204	E	Phone: 575-4350
		Professor	r of Mec	hanical Er	gineering				E-mail:	icjong@uark.edu
Text:	Enginee	ering Mec	hanics: I	Dynamics,	(or Engine	eering	Mechanic	s: Statics	and Dyn	<i>amics</i>), 1991

Jong and Rogers, Oxford University Press

Objectives: This course is aimed at developing in students the concepts and skills related to the analysis and prediction of conditions of bodies in central-force motion, use of rotating reference frames, and rigid bodies under the action of unbalanced force systems in 3 dimensions. Problems related to motion of a gyroscope are the required additional work for graduate students.

Content:

Each student is advised to do all Developmental Exercises interspersed in the sections assigned.

A. Review of Central-force Motion and Plane Kinematics

1. Review of Central-Force Motion

Gravitational force \bigstar Motion under a central force \bigstar Governing differential equations \bigstar Trajectories of spacecraft \bigstar Kepler's laws of planetary motion Sections: 12.8-12 Problems: 12.70, 78, 80

2. Review of Use of Nonrotating Reference Frames

Types of plane motion of a rigid body \diamond Translation \diamond Rotation \diamond Linear and angular motions \diamond General plane motion: Chasles' theorem \diamond Velocities in relative motion \diamond Velocity center \diamond Accelerations in relative motion \diamond Acceleration center \diamond Parametric method Sections: 15.1-10

Problems: 15.15, 25, 29, 33, 35, 36, 47, 50, 57, 70, 79, 84, 96, 98, 107

3. Use of Rotating Reference Frames

Time derivatives of rotating unit vectors ♦ Time derivatives of a vector in two reference frames ♦ Velocities in different reference frames ♦ Accelerations in different reference frames ♦ Interpretations for Coriolis acceleration Sections: 15.11-16

Problems: 15.109, 113, 114, 116, 117, 118, 119, 120, 131

B. Motion of Rigid Bodies in Three Dimensions

1. Kinematics of Rigid Bodies in Space

Time derivatives of a vector in two reference frames \blacklozenge Velocities in different reference frames \blacklozenge Addition theorem for angular velocities \blacklozenge Accelerations in different reference frames \blacklozenge Addition theorem for angular accelerations Sections: 19.1-3

Problems: 19.2, 4, 5, 6, 9, 10, 11, 12, 13, 15

2. Moments and Products of Inertia of a Mass in Space

Moments and products of inertia of a mass \blacklozenge Rotation of axes: principal axes of inertia \blacklozenge Determination of eigenvalues and eigenvectors of inertia matrices

Sections: 19.4-5 Problems: 19.21, 24, 28, 29, 31, 35, 37

3. Kinetics of Rigid Bodies in Space

Momentum of a rigid body in space \diamond Kinetic energy of a rigid body in space \diamond Equations of motion for a rigid body \diamond Translational motion \diamond Euler's equation of motion for a rigid body about its mass center $G \diamond$ Euler's equation of motion for a rigid body about a fixed point $O \diamond$ Euler's equations of motion for $\Omega \neq \omega \diamond$ Motion of a gyroscope: precession, nutation, and spin \diamond Forced steady precession \diamond Torque-free steady precession \diamond Space cone \diamond Body cone

Sections: 19.6-10

Problems: 19.41, 43, 44, 48, 49, 51, 54, 55, 57, 60, 64, 65