

MEEG 4003

Name:

(Underline your last name.)

Final Exam

1. (30%) The Geneva mechanism shown in Fig. P1 consists of a star wheel *S* and a driving wheel *D*. It is known that the driving wheel *D* rotates with a constant angular velocity $\omega_D = 3$ rad/s \heartsuit . For the instant when $\theta = 60^\circ$, determine (*a*) the angular velocity ω_S and angular acceleration α_S of the star wheel *S*, (*b*) the velocity $\mathbf{v}_{B/S}$ and acceleration $\mathbf{a}_{B/S}$ of the engaging pin *B* on the wheel *D* relative to the wheel *S*.

- **2.** (20%) The slender bent rod *OABC*, shown in Fig. P2, weighs 6.44 lb/ft. Determine the moment of inertia of this bent rod about the axis joining the points *O* and *C*.
- **3.** (30%) A 64.4-lb rectangular plate is falling with a downward velocity of 14 ft/s and zero angular velocity when its corner *C* strikes the corner *O* of a post as shown in Fig. P3. If the impact is perfectly plastic, determine immediately after impact (*a*) the angular velocity $\boldsymbol{\omega}$ of the plate, (*b*) the velocity $\overline{\mathbf{v}}$ of its mass center *G*.

4. (20%) A slender rod *OA* of length L = 1.2 m and mass m = 3 kg can rotate freely about the pin in a clevis which remains at the position *O* and is rotated with the vertical shaft about its vertical axis at a constant angular velocity $\omega = 10$ J rad/s as shown in Fig. P4. Applying Euler's equations of motion, determine the angle θ formed by the rod *OA* and the vertical axis.