

Open Books Closed Notes

MEEG 4103

Name:	
	(Underline your last name .)
ID#:	

- Final Exam
- 1. (20%) A shaft made of a 1095 HR steel with *machined surfaces* rotates at a speed of 1500 rev/min and supports a bending force of P = 8 kips, as shown in Fig. P1, where the notch radius is r = d/5, and R_1 and R_2 are the bearing forces. Letting d = 2 in. in the first trial, specify a diameter d using a design factor $n_d = 1.6$ for a life of 3 min.

- 2. (20%) A *nonrotating* round bar made of a 1095 HR steel undergoes cyclic loading such that $\sigma_{\text{max}} = 70$ kpsi, $\sigma_{\text{min}} = -20$ kpsi at the critical point *C*, as shown in Fig. P1, where the notch radius is r = d/5. If d = 2.5 in., estimate the number of cycles to a fatigue failure for this round bar using: (*a*) modified Goodman criterion, (*b*) Gerber criterion.
- 3. (20%) A shaft has the properties $S_e = 300$ MPa, $S_y = 490$ MPa, and $S_{ut} = 600$ MPa. The shaft is subjected to an alternating bending stress of 110 MPa, an alternating torsional stress of 80 MPa, and a steady torsional stress of 90 MPa. Find the factor of safety n_y guarding against a static failure.
- 4. (20%) For the shaft in Problem 3, find the factor of safety n_f guarding against a fatigue failure using (a) modified Goodman criterion, (b) ASME-elliptic criterion, (c) Gerber criterion, (d) Soderberg criterion.
- 5. (20%) In computing the size factor k_b for a nonrotating round bar in bending with diameter *d*, show that the effective dimension d_e is given by $d_e = 0.370 d$.