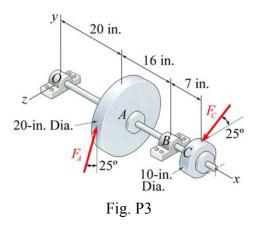

Closed Books Closed Notes

MEEG 4103


Name:	
	(Underline your last name.)
ID#:	
ID#:	

Midterm Exam

1. (25%) A steel countershaft ($E = 30 \times 10^6 \text{ psi}$) with roller bearings at *O* and *B* is in equilibrium as shown, where $T_1 = 8T_2$. Taking the bearings as simple supports, determine (*a*) the deflection y_C at *C*, (*b*) the minimum shaft diameter d_{\min} needed, using ¹/₈-in. increments, if the slope at either bearing should not exceed 0.05° , (*c*) the value of y_C when the shaft diameter is d_{\min} .

2. (25%) A bar is made of AISI 1006 hot-rolled steel with $S_y = 170$ MPa and is loaded as shown, where F = 1.5 kN, P = 18 kN, and T = 150 N·m. Compute the factor of safety *n* for stress elements at *A* and *B* using the *distortion-energy theory*.

- **3.** (20%) The gear forces shown are parallel to the *yz* plane, where $F_A = 500$ lb, the bearings at *O* and *B* may be taken as simple supports, and the shaft has $S_y = 50$ kpsi. For static analysis and a factor of safety of 3.5, use *distortion-energy theory* to find the minimum safe diameter d_{\min} of the shaft.
- **4.** (30%) (a) Derive the octahedral normal stress σ_{oct} and octahedral shear stress τ_{oct} in terms of the principal stresses σ_1 , σ_2 , σ_3 . (b) Describe the *octahedral-shear-stress theory*.