

MEEG 4103

Midterm Exam

1. (30%) A steel countershaft ($E = 30 \times 10^6$ psi) with roller bearings at *O* and *B* is in equilibrium as shown, where $T_1 = 9T_2$. Taking the bearings as simple supports, determine (*a*) the deflection y_c at *C*, (*b*) the minimum shaft diameter d_{\min} needed, using ¹/₈-in. increments, if the slope at either bearing should not exceed 0.05°, (*c*) the value of y_c when the shaft diameter is d_{\min} .

Fig. P1

2. (20%) Using the traction vector formula

$$t_i = \sigma_{ji} n_j$$

derive the octahedral normal stress σ_{oct} and the octahedral shear stress τ_{oct} in terms of the principal stresses: σ_1 , σ_2 , σ_3 . Include pertinent sketches in the derivation.

- 3. (20%) Describe the *octahedral-shear-stress theory* and show that this theory gives the same equivalent stress (σ') for yielding as that given in the distortion energy theory.
- **4.** (30%) A bar of AISI 1040 hot-rolled steel has a minimum yield strength in tension and compression of 42 kpsi. Using the *distortion-energy* and *maximum-shear-stress theories*, computing the von Mises stress, drawing the stress element, and drawing Mohr's circle diagrams, determine the factor of safety *n* for the following plane stress states:
 - (a) $\sigma_x = 30$ kpsi, $\tau_{xy} = -8$ kpsi
 - (b) $\sigma_x = -24$ kpsi, $\sigma_y = -12$ kpsi, $\tau_{xy} = -8$ kpsi
 - (c) $\sigma_x = 12$ kpsi, $\sigma_y = 28$ kpsi, $\tau_{xy} = 6$ kpsi