MEEG 4103 Quiz 4.1.081 A steel countershaft with roller bearings at O and B is in equilibrium as shown, where $T_1 = 6T_2$. Taking the bearings as simple supports, determine (a) the deflection y_C at C, (b) the minimum shaft diameter d_{\min} needed, using ½-in. increments, if the slope at either bearing should not exceed 0.05° , (c) the value of y_C when the shaft diameter is d_{\min} .

$$E = 30 \times 10^6 \text{ psi}$$
 $I = \frac{\pi}{4} r^4$ $T_1 = 672 \text{ lb}$ $T_2 = 112 \text{ lb}$ ①

In *FBD* ① for shaft: $\mathbf{O}_y = 701.2 \text{ lb} \downarrow \text{ } \textcircled{1} \text{ } \mathbf{B}_y = 367.2 \text{ lb} \uparrow \text{ } \textcircled{1}$

In *FBD* for CB: ①
$$O_y^c = \frac{38050.8}{EI}$$
 $M_C^c = -\frac{916286.4}{EI}$

(a)
$$2r = d = 1.25 \text{ in.}$$
 $y_C = M_C^c$ $y_C = -0.255 \text{ in.}$ ①

(b) At
$$O: \quad \theta_O = V_O^c = O_y^c \le 0.05\pi/180: \quad d \ge 2.333 \text{ in. } \oplus 0.05\pi/180: \quad d \ge 2.555 \text{ in. } \oplus 0.05$$